Advertisement

Single Crystal Diamond Micromechanical and Nanomechanical Resonators

  • Meiyong LiaoEmail author
  • Yasuo Koide
  • Liwen Sang
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

Micro- or nanoelectromechanical system (MEMS/NEMS) has witnessed explosive growth with applications spanning from automotive, consumer, industry, military, to biotechnology in the past decades. Presently, MEMS are dominated by Si material due to the mature CMOS technology. However, the intrinsic weakness of Si such as poor mechanical or tribological properties and poor thermal stability limit the device performance and hinder the applications of Si MEMS in harsh environments. Diamond is an outstanding material for MEMS/NEMS under harsh environments with diverse and much better performance than Si in terms of the excellent properties such as high Young’s modulus, high thermal conductivity, hydrophobic surface, and tailorable electronic configuration of diamond. In this chapter, we review our recent progress in the batch fabrication of single crystal diamond (SCD) mechanical resonators on SCD. The energy loss mechanism in the SCD mechanical resonators were discussed and the strategies to improve quality factors of the SCD resonators were described.

Keywords

Single crystal diamond MEMS/NEMS Smart-cut Resonators Quality factor Energy dissipation Defects Sensors 

Notes

Acknowledgements

This work was partially supported by JSPS KAKENHI (Grant Number 15H03999, 15H03980, 26220903) and Nanotechnology Platform projects sponsored by the Ministry of Education, Culture, Sports, and Technology (MEXT) in Japan.

References

  1. 1.
    F. Chollet, H. Liu, A (not so) short introduction to MEMS (2008). http://memscyclopedia.org/introMEMS.html
  2. 2.
    C. Fischer, F. Forsberg, M. Lapisa, S.J. Bleiker, G. Stemme, N. Roxhed, F. Niklaus, Integrating MEMS and ICs. Microsyst. Nanoeng. 1, 15005 (2015).  https://doi.org/10.1038/micronano.2015.5CrossRefGoogle Scholar
  3. 3.
    C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42–49 (1954).  https://doi.org/10.1103/PhysRev.94.42CrossRefGoogle Scholar
  4. 4.
    N. Harvey, D. John, K. Terence, Resonant gate transistor with fixed position electrically floating gate electrode in addition to resonant member. U.S. 3,590,43 (A) (1971)Google Scholar
  5. 5.
    M.L. Roukes, Nanoelectromechanical systems face the future. Phys. World 14, 25–31 (2001).  https://doi.org/10.1088/2058-7058/14/2/29CrossRefGoogle Scholar
  6. 6.
    K.L. Ekinci, M.L. Roukes, Nanoelectromechanical systems. Rev. Sci. Instr. 76, 061101 (2005).  https://doi.org/10.1063/1.1927327CrossRefGoogle Scholar
  7. 7.
    K.L. Ekinci, X.M.H. Huang, M.L. Roukes, Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84(22), 4469–4472 (2004).  https://doi.org/10.1063/1.1755417CrossRefGoogle Scholar
  8. 8.
    A.L. Ruoff, J. Wanagel, High pressures on small areas. Science 198(4321), 1037–1038 (1977).  https://doi.org/10.1126/science.198.4321.1037CrossRefGoogle Scholar
  9. 9.
    R.H. Telling, C.J. Pickard, M.C. Payne, J.E. Field, Theoretical strength and cleavage of diamond. Phys. Rev. Lett. 84(22), 5160–5163 (2000).  https://doi.org/10.1103/PhysRevLett.84.5160CrossRefGoogle Scholar
  10. 10.
    J.E. Graebner, S. Jin, G.W. Kammlott, J.A. Herb, C.F. Gardiner, Large anisotropic thermal conductivity in synthetic diamond. Nature 359, 401–403 (1992).  https://doi.org/10.1038/359401a0CrossRefGoogle Scholar
  11. 11.
    T.R. Anthony, W.F. Banholzer, J.F. Fleischer, L.H. Wei, P.K. Kuo, R.L. Thomas, R.W. Pryor, Thermal conductivity of isotopically enriched 12C diamond. Phys. Rev. B 42(2), 1104–1111 (1990).  https://doi.org/10.1103/PhysRevB.42.1104CrossRefGoogle Scholar
  12. 12.
    R. Lifshitz, M. Roukes, Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61(8), 5600–5609 (2000).  https://doi.org/10.1103/PhysRevB.61.5600CrossRefGoogle Scholar
  13. 13.
    A. Duwel, R.N. Candler, T.W. Kenny, M. Varghese, Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15(6), 1437–1445 (2006).  https://doi.org/10.1109/JMEMS.2006.883573CrossRefGoogle Scholar
  14. 14.
    A.V. Sumant, O. Auciello, M. Liao, O.A. Williams, MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films. MRS Bull. 39(6), 511–516 (2014).  https://doi.org/10.1557/mrs.2014.98
  15. 15.
    M. Liao, Y. Koide, Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches. Crit. Rev. Solid State Mater. Sci. 36(2), 66–101 (2011).  https://doi.org/10.1080/10408436.2011.572748CrossRefGoogle Scholar
  16. 16.
    J.K. Luo, Y.Q. Fu, H.R. Le, J.A. Williams, S.M. Spearing, W.I. Milne, Diamond and diamond-like carbon MEMS. J. Micomech. Microeng. 17, S147 (2007).  https://doi.org/10.1088/0960-1317/17/7/S04CrossRefGoogle Scholar
  17. 17.
    V.P. Adiga, A.V. Sumant, S. Sumant, S. Suresh, C. Gudeman, O. Auciello, J.A. Carlisle, R.W. Carpick, Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators. Phys. Rev. B 79, 245403 (2009).  https://doi.org/10.1103/PhysRevB.79.245403CrossRefGoogle Scholar
  18. 18.
    A. Orlando, P. Sergio, S. Anirudha, G. Chris, S. Suresh, D. Arindom, C. Robert, A. Vivekananda, P. Zurcher, Z. Ma, H.C. Yuan, J.A. Carlisle, B. Kabius, J. Hiller, S. Srinivasan, Are diamonds a MEMS’ best friend? IEEE Microw. Mag. 8(6), 61–75 (2007).  https://doi.org/10.1109/MMM.2007.907816CrossRefGoogle Scholar
  19. 19.
    S. Srinivasan, J. Hiller, B. Kabius, O. Auciello, Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems. Appl. Phys. Lett. 90, 134101 (2007).  https://doi.org/10.1063/1.2679209CrossRefGoogle Scholar
  20. 20.
    A. Gaidarzhy, M. Imboden, P. Mohanty, J. Rankin, B.W. Sheldon, Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems. Appl. Phys. Lett. 91, 203503 (2007).  https://doi.org/10.1063/1.2679209CrossRefGoogle Scholar
  21. 21.
    H. Najar, C. Yang, A. Heidari, L.W. Lin, D. Horsley, Quality factor in polycrystalline diamond micromechanical flexural resonators. J. Microelectromech. Syst. 24(6), 2152–2160 (2015).  https://doi.org/10.1109/JMEMS.2015.2478802CrossRefGoogle Scholar
  22. 22.
    M.Y. Liao, C. Li, S. Hishita, Y. Koide, Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems. J. Micromech. Microeng. 20, 085002 (2010).  https://doi.org/10.1088/0960-1317/20/8/085002CrossRefGoogle Scholar
  23. 23.
    P. Ovartchaiyapong, L.M.A. Pascal, B.A. Myers, P. Lauria, A.C. Bleszynski Jayich, High quality factor single-crystal diamond mechanical resonators. Appl. Phys. Lett. 101, 163505 (2012).  https://doi.org/10.1063/1.4760274
  24. 24.
    Y. Tao, J.M. Boss, B.A. Moores, C.L. Degen, Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 5, 3638 (2014).  https://doi.org/10.1038/ncomms4638
  25. 25.
    M.J. Burek, D. Ramos, P. Patel, I.W. Frank, M. Lončar, Nanomechanical resonant structures in single-crystal diamond. Appl. Phys. Lett. 103(13), 131904 (2013).  https://doi.org/10.1063/1.4821917
  26. 26.
    M.J. Burek, N.P. de Leon, B.J. Shields, B.J.M. Hausmann, Y. Chu, Q. Quan, A.S. Zibrov, H. Park, M.D. Lukin, M. Lončar, Free-standing mechanical and photonic nanostructures in single-crystal diamond. Nano Lett. 12, 6084–6089 (2012).  https://doi.org/10.1021/nl302541e
  27. 27.
    N.R. Parikh, J.D. Hunn, E. McGucken, M.L. Swanson, C.W. White, R.A. Rudder, D.P. Malta, J.B. Posthill, R.J. Markunas, Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing. Appl. Phys. Lett. 61, 3124–3126 (1992).  https://doi.org/10.1063/1.107981CrossRefGoogle Scholar
  28. 28.
    M. Marchywka, P.E. Pehrsson, D.J. Vestyck, Daniel Moses, Low energy ion implantation and electrochemical separation of diamond films. Appl. Phys. Lett. 63, 3521 (1993).  https://doi.org/10.1063/1.110089CrossRefGoogle Scholar
  29. 29.
    C.F. Wang, E.L. Hu, J. Yang, J.E. Bulter, Fabrication of suspended single crystal diamond devices by electrochemical etch. J. Vac. Technol. B 25, 730 (2007).  https://doi.org/10.1116/1.2731327CrossRefGoogle Scholar
  30. 30.
    M.Y. Liao, S. Hishita, E. Watanabe, S. Koizumi, Y. Koide, Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches. Adv. Mater. 22(47), 5393 (2010).  https://doi.org/10.1002/adma.201003074CrossRefGoogle Scholar
  31. 31.
    C. Li, Y. Bando, C. Zhi, Y. Huang, D. Golberg. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology 20(38), 385707 (2009).  https://doi.org/10.1088/0957-4484/20/38/385707
  32. 32.
    J.E. Sader, J.W. Chon, P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instr. 70, 3967–3979 (1999).  https://doi.org/10.1063/1.1150021CrossRefGoogle Scholar
  33. 33.
    G. Moeller. AFM Nanoindentation of viscoelastic materials with large end-radius probes. J. Poly. Sci. Part B Poly. Phys. 47(16), 1573–1587 (2009).  https://doi.org/10.1002/polb.21758
  34. 34.
    J.H. Hoh, A. Engel, Friction effects on force measurements with an atomic force microscope. Langmuir 9(11), 3310–3312 (1993).  https://doi.org/10.1021/la00035a089CrossRefGoogle Scholar
  35. 35.
    B. Cappella, G. Dietler, Force-distance curves by atomic force microscopy. Sur. Sci Rep. 34(1–3), 1–104 (1999).  https://doi.org/10.1016/S0167-5729(99)00003-5CrossRefGoogle Scholar
  36. 36.
    Q. Xiong, Force-deflection sepctroscopy: a new method to determine the Young’s modulus of nanofilaments. Nano Lett. 6(9), 1904–1909 (2006).  https://doi.org/10.1021/nl060978fCrossRefGoogle Scholar
  37. 37.
    S.F. Wang, Y.F. Hsu, J.C. Pu, J.C. Sung, L.G. Hwa, Determination of acoustic wave velocities and elastic properties for diamond and other hard materials. Mater. Chem. Phys. 85(2–3), 432(2004).  https://doi.org/10.1016/j.matchemphys.2004.02.003
  38. 38.
    M.Y. Liao, M. Toda, L.W. Sang, S. Hishita, S. Tanaka, Y. Koide, Energy dissipation in micron- and submicron-thick single crystal diamond mechanical resonators. Appl. Phys. Lett. 105(25), 251904 (2014).  https://doi.org/10.1063/1.4904990CrossRefGoogle Scholar
  39. 39.
    K.B. Gavan, H.J.R. Westra, E.W.J.M. van der Drift, W.J. Venstra, H.S.J. van der Zant, Size-dependent effective young’s modulus of silicon nitride cantilevers. Appl. Phys. Lett. 94(23), 233108 (2009).  https://doi.org/10.1063/1.3152772CrossRefGoogle Scholar
  40. 40.
    M. Liao, Z. Rong, S. Hishita, M. Imura, S. Koizumi, Y. Koide, Nanoelectromechanical switch fabricated from single crystal diamond: experiments and modeling. Diam. Relat. Mater. 24, 69–73 (2012).  https://doi.org/10.1016/j.diamond.2011.10.026CrossRefGoogle Scholar
  41. 41.
    J. Mencik, E. Quandt, Determination of elastic modulus of thin films and small specimens using beam bending methods. J. Mater. Res. 14(5), 2152 (1999).  https://doi.org/10.1557/JMR.1999.0291CrossRefGoogle Scholar
  42. 42.
    K. Yasumura, T. Stowe, E. Chow, T. Pfafman, T. Kenny, B. Stipe, D. Rugar, Quality factors in micron- and submicron-thick cantilevers. J. Microelectromech. Syst. 9(1), 117–125 (2000).  https://doi.org/10.1109/84.825786CrossRefGoogle Scholar
  43. 43.
    R. Lifshitz, M.L. Roukes, Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000).  https://doi.org/10.1103/PhysRevB.61.5600CrossRefGoogle Scholar
  44. 44.
    Y. Jimbo, K. Itao, Energy loss of a cantilever vibrator. J. Horol. Inst. Jpn. 47, 1–15 (1968)Google Scholar
  45. 45.
    M. Imboden, P. Mohanty, A. Gaidarzhy, J. Rankin, B.W. Sheldon, Scaling of dissipation in megahertz-range micromechanical diamond oscillators. Appl. Phys. Lett. 90, 173502 (2007).  https://doi.org/10.1063/1.2732163CrossRefGoogle Scholar
  46. 46.
    D.M. Photiadis, J.A. Judge, Attachment losses of high oscillators. Appl. Phys. Lett. 85(3), 482–485 (2004).  https://doi.org/10.1063/1.1773928CrossRefGoogle Scholar
  47. 47.
    J. Yang, T. Ono, M. Esashi, Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J. Microelectromech. Syst. 11(6), 775–783 (2002).  https://doi.org/10.1109/JMEMS.2002.805208CrossRefGoogle Scholar
  48. 48.
    V.P. Adiga, Mechanical stiffness and diffipation in ultrananocrystalline diamond films. Publicly Accessible Penn Dissertations. p. 413 (2010)Google Scholar
  49. 49.
    M. Liao, M. Toda, L.W. Sang, T. Teraji, M. Imura, Y. Koide, Improvement of the quality factor of single crystal diamond mechanical resonators. Jpn. J. Appl. Phys. 56(2), 024101 (2017).  https://doi.org/10.7567/JJAP.56.024101CrossRefGoogle Scholar
  50. 50.
    H. Wu, L.W. Sang, T. Teraji, T. Li, K. Wu, M. Imura, J. You, Y. Koide, M. Liao, Reducing energy dissipation and surface effect of diamond nanoelectromechanical resonators by annealing in oxygen ambient. Carbon 124, 181–187 (2017).  https://doi.org/10.1016/j.carbon.2017.08.069CrossRefGoogle Scholar
  51. 51.
    J. Yang, T. Ono, M. Esashi, Investigating surface stress: Surface loss in ultrathin single-crystal silicon cantilevers. J. Vac. Sci. Technol. B 19(2), 551–556 (2001).  https://doi.org/10.1116/1.1347040CrossRefGoogle Scholar
  52. 52.
    M. Li, H.X. Tang, M.L. Roukes, Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotech. 2(2), 114–120 (2007).  https://doi.org/10.1038/nnano.2006.208CrossRefGoogle Scholar
  53. 53.
    S. Ozdemir, S. Akhtar, O.E. Gunal, M.E. Khater, R. Saritas, E.M. Abdel-Rahman. M. Yavuz, Measuring the quality factor in MEMS devices. Micromachines 6(12), 1935–1945 (2015).  https://doi.org/10.3390/mi6121466

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Center for Functional Materials, National Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations