Single Crystal Diamond Micromechanical and Nanomechanical Resonators

  • Meiyong LiaoEmail author
  • Yasuo Koide
  • Liwen Sang
Part of the Topics in Applied Physics book series (TAP, volume 121)


Micro- or nanoelectromechanical system (MEMS/NEMS) has witnessed explosive growth with applications spanning from automotive, consumer, industry, military, to biotechnology in the past decades. Presently, MEMS are dominated by Si material due to the mature CMOS technology. However, the intrinsic weakness of Si such as poor mechanical or tribological properties and poor thermal stability limit the device performance and hinder the applications of Si MEMS in harsh environments. Diamond is an outstanding material for MEMS/NEMS under harsh environments with diverse and much better performance than Si in terms of the excellent properties such as high Young’s modulus, high thermal conductivity, hydrophobic surface, and tailorable electronic configuration of diamond. In this chapter, we review our recent progress in the batch fabrication of single crystal diamond (SCD) mechanical resonators on SCD. The energy loss mechanism in the SCD mechanical resonators were discussed and the strategies to improve quality factors of the SCD resonators were described.


Single crystal diamond MEMS/NEMS Smart-cut Resonators Quality factor Energy dissipation Defects Sensors 



This work was partially supported by JSPS KAKENHI (Grant Number 15H03999, 15H03980, 26220903) and Nanotechnology Platform projects sponsored by the Ministry of Education, Culture, Sports, and Technology (MEXT) in Japan.


  1. 1.
    F. Chollet, H. Liu, A (not so) short introduction to MEMS (2008).
  2. 2.
    C. Fischer, F. Forsberg, M. Lapisa, S.J. Bleiker, G. Stemme, N. Roxhed, F. Niklaus, Integrating MEMS and ICs. Microsyst. Nanoeng. 1, 15005 (2015). Scholar
  3. 3.
    C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42–49 (1954). Scholar
  4. 4.
    N. Harvey, D. John, K. Terence, Resonant gate transistor with fixed position electrically floating gate electrode in addition to resonant member. U.S. 3,590,43 (A) (1971)Google Scholar
  5. 5.
    M.L. Roukes, Nanoelectromechanical systems face the future. Phys. World 14, 25–31 (2001). Scholar
  6. 6.
    K.L. Ekinci, M.L. Roukes, Nanoelectromechanical systems. Rev. Sci. Instr. 76, 061101 (2005). Scholar
  7. 7.
    K.L. Ekinci, X.M.H. Huang, M.L. Roukes, Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84(22), 4469–4472 (2004). Scholar
  8. 8.
    A.L. Ruoff, J. Wanagel, High pressures on small areas. Science 198(4321), 1037–1038 (1977). Scholar
  9. 9.
    R.H. Telling, C.J. Pickard, M.C. Payne, J.E. Field, Theoretical strength and cleavage of diamond. Phys. Rev. Lett. 84(22), 5160–5163 (2000). Scholar
  10. 10.
    J.E. Graebner, S. Jin, G.W. Kammlott, J.A. Herb, C.F. Gardiner, Large anisotropic thermal conductivity in synthetic diamond. Nature 359, 401–403 (1992). Scholar
  11. 11.
    T.R. Anthony, W.F. Banholzer, J.F. Fleischer, L.H. Wei, P.K. Kuo, R.L. Thomas, R.W. Pryor, Thermal conductivity of isotopically enriched 12C diamond. Phys. Rev. B 42(2), 1104–1111 (1990). Scholar
  12. 12.
    R. Lifshitz, M. Roukes, Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61(8), 5600–5609 (2000). Scholar
  13. 13.
    A. Duwel, R.N. Candler, T.W. Kenny, M. Varghese, Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15(6), 1437–1445 (2006). Scholar
  14. 14.
    A.V. Sumant, O. Auciello, M. Liao, O.A. Williams, MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films. MRS Bull. 39(6), 511–516 (2014).
  15. 15.
    M. Liao, Y. Koide, Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches. Crit. Rev. Solid State Mater. Sci. 36(2), 66–101 (2011). Scholar
  16. 16.
    J.K. Luo, Y.Q. Fu, H.R. Le, J.A. Williams, S.M. Spearing, W.I. Milne, Diamond and diamond-like carbon MEMS. J. Micomech. Microeng. 17, S147 (2007). Scholar
  17. 17.
    V.P. Adiga, A.V. Sumant, S. Sumant, S. Suresh, C. Gudeman, O. Auciello, J.A. Carlisle, R.W. Carpick, Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators. Phys. Rev. B 79, 245403 (2009). Scholar
  18. 18.
    A. Orlando, P. Sergio, S. Anirudha, G. Chris, S. Suresh, D. Arindom, C. Robert, A. Vivekananda, P. Zurcher, Z. Ma, H.C. Yuan, J.A. Carlisle, B. Kabius, J. Hiller, S. Srinivasan, Are diamonds a MEMS’ best friend? IEEE Microw. Mag. 8(6), 61–75 (2007). Scholar
  19. 19.
    S. Srinivasan, J. Hiller, B. Kabius, O. Auciello, Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems. Appl. Phys. Lett. 90, 134101 (2007). Scholar
  20. 20.
    A. Gaidarzhy, M. Imboden, P. Mohanty, J. Rankin, B.W. Sheldon, Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems. Appl. Phys. Lett. 91, 203503 (2007). Scholar
  21. 21.
    H. Najar, C. Yang, A. Heidari, L.W. Lin, D. Horsley, Quality factor in polycrystalline diamond micromechanical flexural resonators. J. Microelectromech. Syst. 24(6), 2152–2160 (2015). Scholar
  22. 22.
    M.Y. Liao, C. Li, S. Hishita, Y. Koide, Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems. J. Micromech. Microeng. 20, 085002 (2010). Scholar
  23. 23.
    P. Ovartchaiyapong, L.M.A. Pascal, B.A. Myers, P. Lauria, A.C. Bleszynski Jayich, High quality factor single-crystal diamond mechanical resonators. Appl. Phys. Lett. 101, 163505 (2012).
  24. 24.
    Y. Tao, J.M. Boss, B.A. Moores, C.L. Degen, Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 5, 3638 (2014).
  25. 25.
    M.J. Burek, D. Ramos, P. Patel, I.W. Frank, M. Lončar, Nanomechanical resonant structures in single-crystal diamond. Appl. Phys. Lett. 103(13), 131904 (2013).
  26. 26.
    M.J. Burek, N.P. de Leon, B.J. Shields, B.J.M. Hausmann, Y. Chu, Q. Quan, A.S. Zibrov, H. Park, M.D. Lukin, M. Lončar, Free-standing mechanical and photonic nanostructures in single-crystal diamond. Nano Lett. 12, 6084–6089 (2012).
  27. 27.
    N.R. Parikh, J.D. Hunn, E. McGucken, M.L. Swanson, C.W. White, R.A. Rudder, D.P. Malta, J.B. Posthill, R.J. Markunas, Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing. Appl. Phys. Lett. 61, 3124–3126 (1992). Scholar
  28. 28.
    M. Marchywka, P.E. Pehrsson, D.J. Vestyck, Daniel Moses, Low energy ion implantation and electrochemical separation of diamond films. Appl. Phys. Lett. 63, 3521 (1993). Scholar
  29. 29.
    C.F. Wang, E.L. Hu, J. Yang, J.E. Bulter, Fabrication of suspended single crystal diamond devices by electrochemical etch. J. Vac. Technol. B 25, 730 (2007). Scholar
  30. 30.
    M.Y. Liao, S. Hishita, E. Watanabe, S. Koizumi, Y. Koide, Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches. Adv. Mater. 22(47), 5393 (2010). Scholar
  31. 31.
    C. Li, Y. Bando, C. Zhi, Y. Huang, D. Golberg. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology 20(38), 385707 (2009).
  32. 32.
    J.E. Sader, J.W. Chon, P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instr. 70, 3967–3979 (1999). Scholar
  33. 33.
    G. Moeller. AFM Nanoindentation of viscoelastic materials with large end-radius probes. J. Poly. Sci. Part B Poly. Phys. 47(16), 1573–1587 (2009).
  34. 34.
    J.H. Hoh, A. Engel, Friction effects on force measurements with an atomic force microscope. Langmuir 9(11), 3310–3312 (1993). Scholar
  35. 35.
    B. Cappella, G. Dietler, Force-distance curves by atomic force microscopy. Sur. Sci Rep. 34(1–3), 1–104 (1999). Scholar
  36. 36.
    Q. Xiong, Force-deflection sepctroscopy: a new method to determine the Young’s modulus of nanofilaments. Nano Lett. 6(9), 1904–1909 (2006). Scholar
  37. 37.
    S.F. Wang, Y.F. Hsu, J.C. Pu, J.C. Sung, L.G. Hwa, Determination of acoustic wave velocities and elastic properties for diamond and other hard materials. Mater. Chem. Phys. 85(2–3), 432(2004).
  38. 38.
    M.Y. Liao, M. Toda, L.W. Sang, S. Hishita, S. Tanaka, Y. Koide, Energy dissipation in micron- and submicron-thick single crystal diamond mechanical resonators. Appl. Phys. Lett. 105(25), 251904 (2014). Scholar
  39. 39.
    K.B. Gavan, H.J.R. Westra, E.W.J.M. van der Drift, W.J. Venstra, H.S.J. van der Zant, Size-dependent effective young’s modulus of silicon nitride cantilevers. Appl. Phys. Lett. 94(23), 233108 (2009). Scholar
  40. 40.
    M. Liao, Z. Rong, S. Hishita, M. Imura, S. Koizumi, Y. Koide, Nanoelectromechanical switch fabricated from single crystal diamond: experiments and modeling. Diam. Relat. Mater. 24, 69–73 (2012). Scholar
  41. 41.
    J. Mencik, E. Quandt, Determination of elastic modulus of thin films and small specimens using beam bending methods. J. Mater. Res. 14(5), 2152 (1999). Scholar
  42. 42.
    K. Yasumura, T. Stowe, E. Chow, T. Pfafman, T. Kenny, B. Stipe, D. Rugar, Quality factors in micron- and submicron-thick cantilevers. J. Microelectromech. Syst. 9(1), 117–125 (2000). Scholar
  43. 43.
    R. Lifshitz, M.L. Roukes, Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000). Scholar
  44. 44.
    Y. Jimbo, K. Itao, Energy loss of a cantilever vibrator. J. Horol. Inst. Jpn. 47, 1–15 (1968)Google Scholar
  45. 45.
    M. Imboden, P. Mohanty, A. Gaidarzhy, J. Rankin, B.W. Sheldon, Scaling of dissipation in megahertz-range micromechanical diamond oscillators. Appl. Phys. Lett. 90, 173502 (2007). Scholar
  46. 46.
    D.M. Photiadis, J.A. Judge, Attachment losses of high oscillators. Appl. Phys. Lett. 85(3), 482–485 (2004). Scholar
  47. 47.
    J. Yang, T. Ono, M. Esashi, Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J. Microelectromech. Syst. 11(6), 775–783 (2002). Scholar
  48. 48.
    V.P. Adiga, Mechanical stiffness and diffipation in ultrananocrystalline diamond films. Publicly Accessible Penn Dissertations. p. 413 (2010)Google Scholar
  49. 49.
    M. Liao, M. Toda, L.W. Sang, T. Teraji, M. Imura, Y. Koide, Improvement of the quality factor of single crystal diamond mechanical resonators. Jpn. J. Appl. Phys. 56(2), 024101 (2017). Scholar
  50. 50.
    H. Wu, L.W. Sang, T. Teraji, T. Li, K. Wu, M. Imura, J. You, Y. Koide, M. Liao, Reducing energy dissipation and surface effect of diamond nanoelectromechanical resonators by annealing in oxygen ambient. Carbon 124, 181–187 (2017). Scholar
  51. 51.
    J. Yang, T. Ono, M. Esashi, Investigating surface stress: Surface loss in ultrathin single-crystal silicon cantilevers. J. Vac. Sci. Technol. B 19(2), 551–556 (2001). Scholar
  52. 52.
    M. Li, H.X. Tang, M.L. Roukes, Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotech. 2(2), 114–120 (2007). Scholar
  53. 53.
    S. Ozdemir, S. Akhtar, O.E. Gunal, M.E. Khater, R. Saritas, E.M. Abdel-Rahman. M. Yavuz, Measuring the quality factor in MEMS devices. Micromachines 6(12), 1935–1945 (2015).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Center for Functional Materials, National Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations