Advertisement

Chemical Mechanical Polishing of Nanocrystalline Diamond

  • Soumen MandalEmail author
  • Evan L. H. Thomas
  • Jessica M. Werrell
  • Georgina M. Klemencic
  • Johnathan Ash
  • Emmanuel B. Brousseau
  • Oliver A. Williams
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

In this chapter the chemical mechanical polishing of nanocrystalline diamond film is presented. It is shown that it is possible to polish a superhard material like nanocrystalline diamond with a much softer material like silica. It has also been demonstrated that this technique can be used for removing polishing marks on single crystal diamond. Experiments with other oxides like ceria and alumina showed polishing action on nanocrystalline diamond films. Surface roughness reduction rate was found to be inversely proportional to the size of abrasive material. Addition of redox agents to the polishing slurry accelerated the roughness reduction of nanocrystalline diamond films. Based on the experimental results and theoretical studies by other groups we have proposed a polishing mechanism for chemical mechanical polishing of diamond. Lastly, we have applied this technique to study its effect on superconducting diamond films. It was found that even after 14 h of polishing, superconductivity in diamond remained unchanged.

Keywords

Chemical mechanical polishing Nanocrystalline diamond Single crystal diamond Boron doped diamond SF1 Size dependence SUBA-X Superconductivity 

Notes

Acknowledgements

The results presented in this chapter was supported by EPSRC under the grant ‘Nanocrystalline diamond for Micro-Electro-Mechanical-Systems’ reference number EP/J009814/1 and European Research Council (ERC) Consolidator Grant for the development of ‘Superconducting Diamond Quantum Nano-Electro-Mechanical Systems’, Project ID: 647471.

References

  1. 1.
    O.A. Williams, Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640 (2011).  https://doi.org/10.1016/j.diamond.2011.02.015CrossRefGoogle Scholar
  2. 2.
    O.A. Williams, A. Kriele, J. Hees, et al., High young’s modulus in ultra thin nanocrystalline diamond. Chem. Phys. Lett. 495, 84–89 (2010).  https://doi.org/10.1016/j.cplett.2010.06.054
  3. 3.
    M.A. Angadi, T. Watanabe, A. Bodapati et al., Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J. Appl. Phys. 99, 114301 (2006).  https://doi.org/10.1063/1.2199974CrossRefGoogle Scholar
  4. 4.
    M. Imboden, O. Williams, P. Mohanty, Nonlinear dissipation in diamond nanoelectromechanical resonators. Appl. Phys. Lett. 102 (2013).  https://doi.org/10.1063/1.4794907
  5. 5.
    T. Bautze, S. Mandal, O.A. Williams et al., Superconducting nano-mechanical diamond resonators. Carbon 72, 100–105 (2014).  https://doi.org/10.1016/j.carbon.2014.01.060CrossRefGoogle Scholar
  6. 6.
    J.G. Rodriguez-Madrid, G.F. Iriarte, J. Pedros et al., Super-high-frequency SAW resonators on AlN/diamond. IEEE Electron Device Lett. 33, 495–497 (2012).  https://doi.org/10.1109/LED.2012.2183851CrossRefGoogle Scholar
  7. 7.
    O.A. Williams, O. Douhéret, M. Daenen, et al., Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445, 255–258 (2007).  https://doi.org/10.1016/j.cplett.2007.07.091
  8. 8.
    X. Jiang, K. Schiffmann, C.-P.P. Klages, Nucleation and initial growth phase of diamond thin films on (100) silicon. Phys. Rev. B 50, 8402–8410 (1994).  https://doi.org/10.1103/PhysRevB.50.8402CrossRefGoogle Scholar
  9. 9.
    P. Smereka, X. Li, G. Russo, D.J. Srolovitz, Simulation of faceted film growth in three dimensions: microstructure, morphology and texture. Acta Mater. 53, 1191–1204 (2005).  https://doi.org/10.1016/j.actamat.2004.11.013CrossRefGoogle Scholar
  10. 10.
    O. Ergincan, G. Palasantzas, B.J. Kooi, Influence of surface modification on the quality factor of microresonators. Phys. Rev. B 85, 205420 (2012).  https://doi.org/10.1103/PhysRevB.85.205420CrossRefGoogle Scholar
  11. 11.
    G.F. Iriarte, J.G. Rodríguez, F. Calle, Synthesis of c-axis oriented AlN thin films on different substrates: a review. Mater. Res. Bull. 45, 1039–1045 (2010).  https://doi.org/10.1016/j.materresbull.2010.05.035CrossRefGoogle Scholar
  12. 12.
    R.B. Simon, J. Anaya, F. Faili, et al., Effect of grain size of polycrystalline diamond on its heat spreading properties. Appl. Phys. Express 9 (2016).  https://doi.org/10.7567/apex.9.061302
  13. 13.
    J. Anaya, T. Bai, Y. Wang et al., Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Acta Mater. 139, 215–225 (2017).  https://doi.org/10.1016/j.actamat.2017.08.007CrossRefGoogle Scholar
  14. 14.
    Y. Chen, L. Zhang, Polishing of Diamond Materials (Springer, London, 2013)CrossRefGoogle Scholar
  15. 15.
    L. Pastewka, S. Moser, P. Gumbsch, M. Moseler, Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2011).  https://doi.org/10.1038/nmat2902CrossRefGoogle Scholar
  16. 16.
    A. Malshe, B. Park, W. Brown, H. Naseem, A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates. Diam. Relat. Mater. 8, 1198–1213 (1999).  https://doi.org/10.1016/S0925-9635(99)00088-6CrossRefGoogle Scholar
  17. 17.
    I. Friel, S.L. Clewes, H.K. Dhillon et al., Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition. Diam. Relat. Mater. 18, 808–815 (2009).  https://doi.org/10.1016/j.diamond.2009.01.013CrossRefGoogle Scholar
  18. 18.
    T. Schuelke, T.A. Grotjohn, Diamond polishing. Diam. Relat. Mater. 32, 17–26 (2013).  https://doi.org/10.1016/j.diamond.2012.11.007
  19. 19.
    C.D. Ollison, W.D. Brown, A.P. Malshe, et al., A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond. Diam. Relat. Mater. 8, 1083–1090 (1999).  https://doi.org/10.1016/s0925-9635(99)00091-6
  20. 20.
    E.L.H. Thomas, G.W. Nelson, S. Mandal et al., Chemical mechanical polishing of thin film diamond. Carbon 68, 473–479 (2014).  https://doi.org/10.1016/j.carbon.2013.11.023CrossRefGoogle Scholar
  21. 21.
    J. Luo, D.A. Dornfeld, Material removal regions in chemical mechanical planarization for submicron integrated circuit fabrication: coupling effects of slurry chemicals, abrasive size distribution, and wafer-pad contact area. IEEE Trans. Semicond. Manuf. 16, 45–56 (2003).  https://doi.org/10.1109/TSM.2002.807739CrossRefGoogle Scholar
  22. 22.
    P.B. Zantye, A. Kumar, A.K. Sikder, Chemical mechanical planarization for microelectronics applications. Mater. Sci. Eng. R Rep. 45, 89–220 (2004).  https://doi.org/10.1016/j.mser.2004.06.002CrossRefGoogle Scholar
  23. 23.
    G.M. Klemencic, S. Mandal, J.M. Werrell et al., Superconductivity in planarised nanocrystalline diamond films. Sci. Technol. Adv. Mater. 18, 239–244 (2017).  https://doi.org/10.1080/14686996.2017.1286223CrossRefGoogle Scholar
  24. 24.
    J.M. Werrell, S. Mandal, E.L.H. Thomas et al., Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Sci. Technol. Adv. Mater. 18, 654–663 (2017).  https://doi.org/10.1080/14686996.2017.1366815CrossRefGoogle Scholar
  25. 25.
    S. Mandal, E.L.H. Thomas, L. Gines et al., Redox agent enhanced chemical mechanical polishing of thin film diamond. Carbon 130, 25–30 (2018).  https://doi.org/10.1016/j.carbon.2017.12.077CrossRefGoogle Scholar
  26. 26.
    G.M. Pharr, D.L. Callahan, S.D. McAdams et al., Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 68, 779–781 (1996).  https://doi.org/10.1063/1.116530CrossRefGoogle Scholar
  27. 27.
    B. Hussey, J. Wilson, Advanced Technical Ceramics Directory and Databook (Springer, US, Boston, MA, 1998)CrossRefGoogle Scholar
  28. 28.
    N. Elbel, Tungsten Chemical Mechanical Polishing. J. Electrochem. Soc. 145, 1659 (1998).  https://doi.org/10.1149/1.1838533CrossRefGoogle Scholar
  29. 29.
    C. Li, I.B. Bhat, R. Wang, J. Seiler, Electro-chemical mechanical polishing of silicon carbide. J. Electron. Mater. 33, 481–486 (2004).  https://doi.org/10.1007/s11664-004-0207-6CrossRefGoogle Scholar
  30. 30.
    C. Spiro, G. Steuer, F.B. Kaufman, Method of polishing a tungsten carbide, US8162723B2 (2006)Google Scholar
  31. 31.
    C.D. Wagner, L.E. Davis, M.V. Zeller et al., Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 3, 211–225 (1981).  https://doi.org/10.1002/sia.740030506CrossRefGoogle Scholar
  32. 32.
    J.I. Wilson, J. Walton, G. Beamson, Analysis of chemical vapour deposited diamond films by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 121, 183–201 (2001).  https://doi.org/10.1016/S0368-2048(01)00334-6CrossRefGoogle Scholar
  33. 33.
    S. Ferro, M. Dal Colle, A. De Battisti, Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes. Carbon 43, 1191–1203 (2005).  https://doi.org/10.1016/j.carbon.2004.12.012CrossRefGoogle Scholar
  34. 34.
    S. Jin, J.E. Graebner, G.W. Kammlott et al., Massive thinning of diamond films by a diffusion process. Appl. Phys. Lett. 60, 1948–1950 (1992).  https://doi.org/10.1063/1.107133CrossRefGoogle Scholar
  35. 35.
    A. Hirata, H. Tokura, M. Yoshikawa, Smoothing of chemically vapour deposited diamond films by ion beam irradiation. Thin Solid Films 212, 43–48 (1992).  https://doi.org/10.1016/0040-6090(92)90498-ZCrossRefGoogle Scholar
  36. 36.
    A.M. Ozkan, A.P. Malshe, W.D. Brown, Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates. Diam. Relat. Mater. 6, 1789–1798 (1997).  https://doi.org/10.1016/S0925-9635(97)00141-6CrossRefGoogle Scholar
  37. 37.
    R.H. Olsen, D.K. Aspinwall, R.C. Dewes, Electrical discharge machining of conductive CVD diamond tool blanks. J. Mater. Process. Technol. 155–156, 1227–1234 (2004).  https://doi.org/10.1016/j.jmatprotec.2004.04.355CrossRefGoogle Scholar
  38. 38.
    Y. Chen, L. Zhang, Mechanical Polishing, Polishing of Diamond Materials: Mechanisms, Modeling and Implementation (Springer, London, 2013), pp. 25–44CrossRefGoogle Scholar
  39. 39.
    R.M. Denning, Directional grinding hardness in diamond. Am. Min. 38, 108–117 (1953)Google Scholar
  40. 40.
    H. Whittaker, C.B. Slawson, Vector hardness in diamond tools. Am. Min. 31, 143–149 (1946)Google Scholar
  41. 41.
    E.H. Kraus, C.B. Slawson, Variation of hardness in the diamond. Am. Min. 24, 661–676 (1939)Google Scholar
  42. 42.
    S.E. Grillo, J.E. Field, The polishing of diamond. J. Phys. D Appl. Phys. 30, 202–209 (1997).  https://doi.org/10.1088/0022-3727/30/2/007CrossRefGoogle Scholar
  43. 43.
    S.E. Grillo, J.E. Field, F.M. Van Bouwelen, Diamond polishing: the dependency of friction and wear on load and crystal orientation. J. Phys. D Appl. Phys. 33, 985–990 (2000).  https://doi.org/10.1088/0022-3727/33/8/315CrossRefGoogle Scholar
  44. 44.
    M.P. Hitchiner, E.M. Wilks, J. Wilks, The polishing of diamond and diamond composite materials. Wear 94, 103–120 (1984).  https://doi.org/10.1016/0043-1648(84)90169-8CrossRefGoogle Scholar
  45. 45.
    W.J. Huisman, J.F. Peters, S.A. de Vries et al., Structure and morphology of the as-polished diamond(111) −1 × 1 surface. Surf. Sci. 387, 342–353 (1997).  https://doi.org/10.1016/S0039-6028(97)00369-5CrossRefGoogle Scholar
  46. 46.
    M.R. Jarvis, R. Perez, F.M. van Bouwelen, M.C. Payne, Microscopic mechanism for mechanical polishing of diamond (110) surfaces. Phys. Rev. Lett. 80, 3428–3431 (1998).  https://doi.org/10.1103/PhysRevLett.80.3428CrossRefGoogle Scholar
  47. 47.
    J.R. Hird, J.E. Field, Diamond polishing. Proc. R Soc. Math. Phys. Eng. Sci. 460, 3547–3568 (2004).  https://doi.org/10.1098/rspa.2004.1339CrossRefGoogle Scholar
  48. 48.
    P.N. Volpe, P. Muret, F. Omnes et al., Defect analysis and excitons diffusion in undoped homoepitaxial diamond films after polishing and oxygen plasma etching. Diam. Relat. Mater. 18, 1205–1210 (2009).  https://doi.org/10.1016/j.diamond.2009.04.008CrossRefGoogle Scholar
  49. 49.
    A. Gaisinskaya, R. Edrei, A. Hoffman, Y. Feldheim, Morphological evolution of polished single crystal (100) diamond surface exposed to microwave hydrogen plasma. Diam. Relat. Mater. 18, 1466–1473 (2009).  https://doi.org/10.1016/j.diamond.2009.09.014CrossRefGoogle Scholar
  50. 50.
    A.B. Shorey, K.M. Kwong, K.M. Johnson, S.D. Jacobs, Nanoindentation hardness of particles used in magnetorheological finishing (MRF). Appl. Opt. 39, 5194 (2000).  https://doi.org/10.1364/AO.39.005194CrossRefGoogle Scholar
  51. 51.
    M. Bielmann, Effect of particle size during tungsten chemical mechanical polishing. Electrochem. Solid-State Lett. 2, 401 (1999).  https://doi.org/10.1149/1.1390851CrossRefGoogle Scholar
  52. 52.
    D. Tamboli, G. Banerjee, M. Waddell, Novel interpretations of CMP removal rate dependencies on slurry particle size and concentration. Electrochem. Solid-State Lett. 7, F62 (2004).  https://doi.org/10.1149/1.1795033CrossRefGoogle Scholar
  53. 53.
    Z. Zhang, W. Liu, Z. Song, Particle size and surfactant effects on chemical mechanical polishing of glass using silica-based slurry. Appl. Opt. 49, 5480 (2010).  https://doi.org/10.1364/AO.49.005480CrossRefGoogle Scholar
  54. 54.
    C. Liu, B. Dai, W. Tseng, C. Yeh, Modeling of the wear mechanism during chemical-mechanical polishing. J. Electrochem. Soc. 143, 716 (1996).  https://doi.org/10.1149/1.1836507CrossRefGoogle Scholar
  55. 55.
    Y. Wang, Y. Zhao, W. An et al., Modeling effects of abrasive particle size and concentration on material removal at molecular scale in chemical mechanical polishing. Appl. Surf. Sci. 257, 249–253 (2010).  https://doi.org/10.1016/j.apsusc.2010.06.077CrossRefGoogle Scholar
  56. 56.
    A. Peguiron, G. Moras, M. Walter et al., Activation and mechanochemical breaking of C–C bonds initiate wear of diamond (110) surfaces in contact with silica. Carbon 98, 474–483 (2016).  https://doi.org/10.1016/j.carbon.2015.10.098CrossRefGoogle Scholar
  57. 57.
    T. Kuwahara, G. Moras, M. Moseler, Friction regimes of water-lubricated diamond (111): role of interfacial ether groups and tribo-induced aromatic surface reconstructions. Phys. Rev. Lett. 119, 96101 (2017).  https://doi.org/10.1103/PhysRevLett.119.096101CrossRefGoogle Scholar
  58. 58.
    H. Hocheng, C.C.C. Chen, H.H. Cheng, C.C.C. Chen, Chemical-assisted mechanical polishing of diamond film on wafer. Mater. Sci. Forum 505–507, 1225–1230 (2006).  https://doi.org/10.4028/www.scientific.net/MSF.505-507.1225CrossRefGoogle Scholar
  59. 59.
    Y. Liu, K. Zhang, F. Wang, Y. Han, Study on the cleaning of silicon after CMP in ULSI. Microelectron. Eng. 66, 433–437 (2003).  https://doi.org/10.1016/S0167-9317(02)00906-1CrossRefGoogle Scholar
  60. 60.
    S. Ghodbane, D. Ballutaud, F. Omnès, C. Agnès, Comparison of the XPS spectra from homoepitaxial 111}, {100 and polycrystalline boron-doped diamond films. Diam. Relat. Mater. 19, 630–636 (2010).  https://doi.org/10.1016/j.diamond.2010.01.014CrossRefGoogle Scholar
  61. 61.
    F. Klauser, S. Ghodbane, R. Boukherroub et al., Comparison of different oxidation techniques on single-crystal and nanocrystalline diamond surfaces. Diam. Relat. Mater. 19, 474–478 (2010).  https://doi.org/10.1016/j.diamond.2009.11.013CrossRefGoogle Scholar
  62. 62.
    M.Y. Tsai, S.T. Chen, Y.S. Liao, J. Sung, Novel diamond conditioner dressing characteristics of CMP polishing pad. Int. J. Mach. Tools Manuf 49, 722–729 (2009).  https://doi.org/10.1016/j.ijmachtools.2009.03.001CrossRefGoogle Scholar
  63. 63.
    Y.C. Kim, S.J.L. Kang, Novel CVD diamond-coated conditioner for improved performance in CMP processes. Int. J. Mach. Tools Manuf 51, 565–568 (2011).  https://doi.org/10.1016/j.ijmachtools.2011.02.008CrossRefGoogle Scholar
  64. 64.
    F.K. De Theije, O. Roy, N.J. Van Der Laag, W.J.P. Van Enckevort, Oxidative etching of diamond. Diam. Relat. Mater. 9, 929–934 (2000).  https://doi.org/10.1016/S0925-9635(99)00239-3CrossRefGoogle Scholar
  65. 65.
    F.K. De-Theije, E. van-Veenendaal, W.J.P. van-Enckevort, E. Vlieg, Oxidative etching of cleaved synthetic diamond {111} surfaces. Surf. Sci. 492, 91–105 (2001).  https://doi.org/10.1016/s0039-6028(01)01398-x
  66. 66.
    Y. Yao, Y. Ishikawa, Y. Sugawara et al., Fast removal of surface damage layer from single crystal diamond by using chemical etching in molten KCl + KOH solution. Diam. Relat. Mater. 63, 86–90 (2016).  https://doi.org/10.1016/j.diamond.2015.10.003CrossRefGoogle Scholar
  67. 67.
    M. Krishnan, J.W. Nalaskowski, L.M. Cook, Chemical mechanical planarization: slurry chemistry, materials, and mechanisms. Chem. Rev. 110, 178–204 (2010).  https://doi.org/10.1021/cr900170zCrossRefGoogle Scholar
  68. 68.
    H. Hocheng, H.Y. Tsai, Y.T. Su, Modeling and experimental analysis of the material removal rate in the chemical mechanical planarization of dielectric films and bare silicon wafers. J. Electrochem. Soc. 148, G581 (2001).  https://doi.org/10.1149/1.1401087CrossRefGoogle Scholar
  69. 69.
    G. Moras, L. Pastewka, M. Walter et al., Progressive shortening of sp-hybridized carbon chains through oxygen-induced cleavage. J. Phys. Chem. C 115, 24653–24661 (2011).  https://doi.org/10.1021/jp209198gCrossRefGoogle Scholar
  70. 70.
    G. Moras, L. Pastewka, P. Gumbsch, M. Moseler, Formation and oxidation of linear carbon chains and their role in the wear of carbon materials. Tribol. Lett. 44, 355–365 (2011).  https://doi.org/10.1007/s11249-011-9864-9CrossRefGoogle Scholar
  71. 71.
    D. Wu, Y.C. Ma, Z.L. Wang et al., Optical properties of boron-doped diamond. Phys. Rev. B 73, 12501 (2006).  https://doi.org/10.1103/PhysRevB.73.012501CrossRefGoogle Scholar
  72. 72.
    V.S. Vavilov, Semiconducting diamond. Phys. Status Solidi 31, 11–26 (1975).  https://doi.org/10.1002/pssa.2210310102CrossRefGoogle Scholar
  73. 73.
    M.I. Eremets, Semiconducting diamond. Semicond. Sci. Technol. 6, 439–444 (1991).  https://doi.org/10.1088/0268-1242/6/6/004CrossRefGoogle Scholar
  74. 74.
    T. Tshepe, J. Prins, M. Hoch, Metal–insulator transition in boron-ion implanted type IIa diamond. Diam. Relat. Mater. 8, 1508–1510 (1999).  https://doi.org/10.1016/S0925-9635(99)00066-7CrossRefGoogle Scholar
  75. 75.
    E.A. Ekimov, V.A. Sidorov, E.D. Bauer et al., Superconductivity in diamond. Nature 428, 542–545 (2004).  https://doi.org/10.1038/nature02449CrossRefGoogle Scholar
  76. 76.
    E. Bustarret, J. Kačmarčik, C. Marcenat et al., Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. Phys. Rev. Lett. 93, 237005 (2004).  https://doi.org/10.1103/PhysRevLett.93.237005CrossRefGoogle Scholar
  77. 77.
    F. Dahlem, P. Achatz, O.A. Williams, et al., Nanocrystalline boron-doped diamond films, a mixture of BCS-like and non-BCS-like superconducting grains. Phys. Status Solidi. 207, 2064–2068 (2010).  https://doi.org/10.1002/pssa.201000013
  78. 78.
    Z.L. Wang, Q. Luo, L.W. Liu et al., The superconductivity in boron-doped polycrystalline diamond thick films. Diam. Relat. Mater. 15, 659–663 (2006).  https://doi.org/10.1016/j.diamond.2005.12.035CrossRefGoogle Scholar
  79. 79.
    Y. Takano, M. Nagao, T. Takenouchi et al., Superconductivity in polycrystalline diamond thin films. Diam. Relat. Mater. 14, 1936–1938 (2005).  https://doi.org/10.1016/j.diamond.2005.08.014CrossRefGoogle Scholar
  80. 80.
    S. Mandal, C. Naud, O.A. Williams et al., Nanostructures made from superconducting boron-doped diamond. Nanotechnology 21, 195303 (2010).  https://doi.org/10.1088/0957-4484/21/19/195303CrossRefGoogle Scholar
  81. 81.
    S. Mandal, C. Naud, O.A. Williams, et al., Detailed study of superconductivity in nanostructured nanocrystalline boron doped diamond thin films. Phys. Status Solidi. 207, 2017–2022 (2010).  https://doi.org/10.1002/pssa.201000008
  82. 82.
    G.M. Klemencic, J.M. Fellows, J.M. Werrell et al., Fluctuation spectroscopy as a probe of granular superconducting diamond films. Phys. Rev. Mater. 1, 44801 (2017).  https://doi.org/10.1103/PhysRevMaterials.1.044801CrossRefGoogle Scholar
  83. 83.
    N. Titova, A.I. Kardakova, N. Tovpeko et al., Slow electron-phonon cooling in superconducting diamond films. IEEE Trans. Appl. Supercond. 27, 1–4 (2017).  https://doi.org/10.1109/TASC.2016.2638199CrossRefGoogle Scholar
  84. 84.
    M. Watanabe, A. Kawano, S. Kitagoh et al., Stacked SNS Josephson junction of all boron doped diamond. Phys. C Supercond. Appl. 470, S613–S615 (2010).  https://doi.org/10.1016/j.physc.2009.11.061CrossRefGoogle Scholar
  85. 85.
    S. Mandal, T. Bautze, O.A. Williams et al., The diamond superconducting quantum interference device. ACS Nano 5, 7144–7148 (2011).  https://doi.org/10.1021/nn2018396CrossRefGoogle Scholar
  86. 86.
    M. Watanabe, R. Kanomata, S. Kurihara et al., Vertical SNS weak-link Josephson junction fabricated from only boron-doped diamond. Phys. Rev. B Condens. Matter. Mater. Phys. 85, 3–4 (2012).  https://doi.org/10.1103/PhysRevB.85.184516CrossRefGoogle Scholar
  87. 87.
    J. Zhang, J.W. Zimmer, R.T. Howe, R. Maboudian, Characterization of boron-doped micro- and nanocrystalline diamond films deposited by wafer-scale hot filament chemical vapor deposition for MEMS applications. Diam. Relat. Mater. 17, 23–28 (2008).  https://doi.org/10.1016/j.diamond.2007.09.010CrossRefGoogle Scholar
  88. 88.
    M. Imboden, P. Mohanty, Dissipation in nanoelectromechanical systems. Phys. Rep. 534, 89–146 (2014).  https://doi.org/10.1016/j.physrep.2013.09.003CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soumen Mandal
    • 1
    Email author
  • Evan L. H. Thomas
    • 1
  • Jessica M. Werrell
    • 1
  • Georgina M. Klemencic
    • 1
  • Johnathan Ash
    • 1
    • 2
  • Emmanuel B. Brousseau
    • 3
  • Oliver A. Williams
    • 1
  1. 1.School of Physics and AstronomyCardiff UniversityCardiffUK
  2. 2.Department of PhysicsAberystwyth UniversityAberystwythUK
  3. 3.School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations