Advertisement

The Effect of Dopants on Diamond Surface Properties and Growth

  • Karin LarssonEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

The purpose with the present studies has been to support and explain the experimental observations made regarding the effect by N-, P-, S- and B-doping on the diamond (111), (100)−2 × 1 and (110) growth rate, respectively. All surfaces were assumed to be H-terminated. Density functional theory calculations were used, based on a plane wave approach under periodic boundary conditions. It was shown that the surface H abstraction reaction is most probably the rate-limiting step during diamond growth. Moreover, the results showed that it is N, substitutionally positioned within the upper diamond surface, that will cause the growth rate improvement, and not nitrogen chemisorbed onto the growing surface in the form of either NH (or NH2). These results coupled very strongly to experimental counterparts. For the situation with P doping, there were no visible energy barrier obtained for the approaching H radical to any of the diamond surface planes. Hence, the growth rate must be appreciably increased as a function of doping with P. It was furthermore observed that S and B doping will lead to anomalous changes in the diamond growth rate (i.e., either increase or decrease), depending on the position of these two dopants in the lattice. These phenomena are also strongly supported by experimental observations where there are both increasing and decreasing effects of the diamond growth rate by S and B doping.

Keywords

Dopants Diamond growth Diamond surface properties Modelling and simulations 

Notes

Acknowledgements

This work was supported by the Faculty of Uppsala University, and the Swedish Research Council (VR). The computational results were obtained using CASTEP from BIOVIA.

References

  1. 1.
    M. Amaral, A.G. Dias, P.S. Gomes, M.A. Lopes, R.F. Silva, J.D. Santos, M.H. Fernando, Nanocrystalline diamond in vitro biocompatibility assessment by MG63 and human bone marrow cell cultures. J. Biomed. Mater. Res. A 87(1), 91–99 (2008).  https://doi.org/10.1002/jbm.a.31742CrossRefGoogle Scholar
  2. 2.
    J.P. McEvoy, G.W. Brudvig, Water splitting of photosystem II. Chem. Rev. 106(11), 4455–4483 (2006).  https://doi.org/10.1021/cr0204294CrossRefGoogle Scholar
  3. 3.
    M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51(2), 191–199 (2005).  https://doi.org/10.1016/j.electacta.2005.04.023CrossRefGoogle Scholar
  4. 4.
    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990).  https://doi.org/10.1103/PhysRevB.41.7892CrossRefGoogle Scholar
  5. 5.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
  6. 6.
    D. Petrini, K. Larsson, Theoretical study of the thermodynamic and kinetic aspects of terminated (111) diamond surfaces. J. Phys. Chem. C 112(37), 14367–14376 (2008).  https://doi.org/10.1021/jp709625aCrossRefGoogle Scholar
  7. 7.
    H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976).  https://doi.org/10.1103/PhysRevB.13.5188CrossRefGoogle Scholar
  8. 8.
    G.Z. Cao, J.J. Schermer, W.J.P. van Enckevort, W.A.L.M. Elst, L.J. Giling, Growth of 100 textured diamond films by the addition of nitrogen. J. Appl. Phys. 79(3), 1357–1364 (1996).  https://doi.org/10.1063/1.361033CrossRefGoogle Scholar
  9. 9.
    W. Müller-Sebert, E. Wörner, F. Fuchs, C. Wild, P. Koidl, Nitrogen induced increase of growth rate in chemical vapor deposition of diamond. Appl. Phys. Lett. 68, 759–760 (1996).  https://doi.org/10.1063/1.116733
  10. 10.
    C.S. Yan, Y.K. Vohra, Multiple twinning and nitrogen defect center in chemical vapor deposited homoepitaxial diamond. Diam. Relat. Mater. 8(2022), 2022–2031 (1999).  https://doi.org/10.1016/S0925-9635(99)00148-XCrossRefGoogle Scholar
  11. 11.
    T. Liu, D. Raabe, Influence of nitrogen doping on growth rate and texture evolution of chemical vapor deposition diamond films. Appl. Phys. Lett. 94, 211191–211193 (2009).  https://doi.org/10.1063/1.3072601CrossRefGoogle Scholar
  12. 12.
    S. Dunst, H. Sternschulte, M. Schreck, Growth rate enhancement by nitrogen in diamond chemical vapor deposition—a catalytic effect. Appl. Phys. Lett. 94, 224101–224103 (2009).  https://doi.org/10.1063/1.3143631CrossRefGoogle Scholar
  13. 13.
    Y. Bar-Yam, T.D. Moustakas, Defect-induced stabilization of diamond films. Nature 342, 786 (1989).  https://doi.org/10.1038/342786a0CrossRefGoogle Scholar
  14. 14.
    T. Frauenheim, G. Jungnickel, P. Sitch, M. Kaukonen, F. Weich, J. Widany, D. Porezag, A molecular dynamics study of N-incorporation into carbon systems: doping, diamond growth and nitride formation. Diam. Relat. Mater. 7, 348–355 (1998).  https://doi.org/10.1016/S0925-9635(97)00186-6CrossRefGoogle Scholar
  15. 15.
    G.B. Bachelet, D.R. Hamann, M. Scluter, Pseudopotentials that work: from H to Pu. Phys. Rev. B 26, 4199–4219 (1982).  https://doi.org/10.1103/PhysRevB.26.4199CrossRefGoogle Scholar
  16. 16.
    H. Sternschulte, M. Schreck, B. Stritzker, A. Bergmaier, G. Dollinger, Growth and properties of CVD diamond films grown under H2S addition. Diam. Relat. Mater. 12(3–7), 318–323 (2003).  https://doi.org/10.1016/S0925-9635(02)00312-6CrossRefGoogle Scholar
  17. 17.
    R. Haubner, D. Sommer, Hot-filament diamond deposition with sulfur addition. Diam. Rel. Mater. 12(3), 298–305 (2003).  https://doi.org/10.1016/S0925-9635(02)00342-4CrossRefGoogle Scholar
  18. 18.
    S. Bohr, R. Haubner, B. Lux, Influence of phosphorus addition on diamond CVD. Diam. Rel. Mater. 4(2), 133–144 (1995).  https://doi.org/10.1016/0925-9635(94)00235-5
  19. 19.
    Q. Liang, C. Yan, Y. Meng, J. Lai, S. Krasnicki, H. Mao, R.J. Hemley, Recent advances in high-growth rate single-crystal CVD diamond. Diam. Rel. Mater. 18(5), 698–703 (2009).  https://doi.org/10.1016/j.diamond.2008.12.002CrossRefGoogle Scholar
  20. 20.
    H. Kato, J. Barjon, N. Habka, T. Matsumoto, D. Takeuchi, H. Okushi, S. Yamasaki, Energy level of compensator states in (001) phosphorus-doped diamond. Diam. Rel. Mater. 20(7), 1016–1019 (2011).  https://doi.org/10.1016/j.diamond.2011.05.021
  21. 21.
    H. Kato, T. Makino, S. Yamasaki, H. Okushi, n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D Appl. Phys. 40(20), 6189–6200 (2007).  https://doi.org/10.1088/0022-3727/40/20/S05CrossRefGoogle Scholar
  22. 22.
    M. Nishitani-Gamo, C. Xiao, Y. Zhang, E. Yasu, Y. Kikuchi, I. Sakaguchi, T. Suzuki, Y. Sato, T. Ando, Homoepitaxial diamond growth with sulfur-doping by microwave plasma-assisted chemical vapor deposition. Thin Solid Films 382(1), 113–123 (2001).  https://doi.org/10.1016/S0040-6090(00)01770-3CrossRefGoogle Scholar
  23. 23.
    S.C. Eaton, A.B. Anderson, J.C. Angus, Y.E. Evstefeeva, Y.V. Pleskov, Diamond growth in the presence of boron and sulfur. Diam. Rel. Mater. 12(10), 1627–1632 (2003).  https://doi.org/10.1016/S0925-9635(03)00202-4CrossRefGoogle Scholar
  24. 24.
    S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl. Phys. Lett. 71(8), 1065–1067 (1997).  https://doi.org/10.1063/1.119729CrossRefGoogle Scholar
  25. 25.
    T. Miyazaki, H. Kato, H. Okushi, S. Yamasaki, Ab initio energetics of phosphorus impurity in subsurface regions of hydrogenated diamond surfaces. Surf. Sci. Nanotech. 4, 124–128 (2006).  https://doi.org/10.1380/ejssnt.2006.124CrossRefGoogle Scholar
  26. 26.
    H. Wada, T. Teraji, T. Ito, Growth and characterization of P-doped CVD diamond (111) thin films homoepitaxially grown using trimethylphosphine. Appl. Surf. Sci. 244(1), 305–309 (2005).  https://doi.org/10.1016/j.apsusc.2004.10.137CrossRefGoogle Scholar
  27. 27.
    A. Mainwood, Theoretical modelling of dopants in diamond. J. Mater. Sci. Mater. Electron. 17(6), 453–458 (2006).  https://doi.org/10.1007/s10854-006-8091-xCrossRefGoogle Scholar
  28. 28.
    T. Miyazaki, H. Okushi, Theoretical modeling of sulfur–hydrogen complexes in diamond. Diam. Rel. Mater. 11(3), 323–327 (2002).  https://doi.org/10.1016/S0925-9635(01)00543-XCrossRefGoogle Scholar
  29. 29.
    E. Gheeraert, N. Casanova, A. Tajani, A. Deneuville, E. Bustarret, J.A. Garrido, C.E. Nebel, M. Stutzmann, n-Type doping of diamond by sulfur and phosphorus. Diam. Rel. Mater. 11(3), 289–295 (2002).  https://doi.org/10.1016/S0925-9635(01)00683-5CrossRefGoogle Scholar
  30. 30.
    Z.M. Shah, A. Mainwood, A theoretical study of the effect of nitrogen, boron and phosphorus impurities on the growth and morphology of diamond surfaces. Diam. Relat. Mater. 17(7), 1307–1310 (2008).  https://doi.org/10.1016/j.diamond.2008.03.028CrossRefGoogle Scholar
  31. 31.
    R. Kalish, The search for donors in diamond. Diam. Relat. Mater. 10, 1749–1755 (2001).  https://doi.org/10.1016/S0925-9635(01)00426-5CrossRefGoogle Scholar
  32. 32.
    S.A. Kajihara, A. Antonelli, J. Bernholc, R. Car, Nitrogen and potential n-type dopants in diamond. Phys. Rev. Lett. 66, 21101 (1991).  https://doi.org/10.1103/PhysRevLett.66.2010CrossRefGoogle Scholar
  33. 33.
    R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108(7), 2646–2687 (2008).  https://doi.org/10.1021/cr068076mCrossRefGoogle Scholar
  34. 34.
    Y.V. Pleskov, A.Y. Sakharova, M.D. Krotova, L.L. Bouilov, B.V. Spitsyn, Photoelectrochemical properties of semiconductor diamond. J. Electroanalyt. Chem. 228(1–2), 19–27 (1987).  https://doi.org/10.1016/0022-0728(87)80093-1
  35. 35.
    G.M. Swain, R. Ramesham, The electrochemical activity of boron-doped polycrystalline diamond thin-film electrodes. Analyt. Chem. 65(4), 345–351 (1993).  https://doi.org/10.1021/ac00052a007CrossRefGoogle Scholar
  36. 36.
    A.W. Williams, E. Lightowl, A.T. Collins, Impurity conduction in synthetic semiconducting diamond. J. Phys. Part C Solid State Phys. 3(8), 1727 (1970).  https://doi.org/10.1088/0022-3719/3/8/011CrossRefGoogle Scholar
  37. 37.
    R.M. Chrenko, Boron, dominant acceptor in semiconducting diamond. Phys. Rev. B 7(10), 4560–4567 (1973).  https://doi.org/10.1103/PhysRevB.7.4560CrossRefGoogle Scholar
  38. 38.
    H.D. Li, T. Zhang, L. Li, X. Lü, B. Li, Z. Jin, G. Zou, Investigation on crystalline structure, boron distribution, and residual stresses in freestanding boron-doped CVD diamond films. J. Cryst. Growth 312(12–13), 1986–1991 (2010).  https://doi.org/10.1016/j.jcrysgro.2010.03.020
  39. 39.
    N.G. Ferreira, E. Abramof, E.J. Corat, V.J. Trava-Airoldi, Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction. Carbon 41(6), 1301–1308 (2003).  https://doi.org/10.1016/s0008-6223(03)00071-x
  40. 40.
    K. Miyata, K. Kumagai, K. Nishimura, K. Kobashi, Morphology of heavily B-doped diamond films. J. Mater. Res. 8(11), 2845–2857 (1993).  https://doi.org/10.1557/jmr.1993.2845
  41. 41.
    J. Cifre, J. Puigdollers, M.C. Polo, J. Esteve, Trimethylboron doping of Cvd diamond thin-films. Diam. Rel. Mater. 3(4–6), 628–631 (1994).  https://doi.org/10.1016/0925-9635(94)90238-0
  42. 42.
    R. Haubner, S. Bohr, B. Lux, Comparison of P, N and B additions during CVD diamond deposition. Diam. Rel. Mater. 8(2–5), 171–178 (1999).  https://doi.org/10.1016/S0925-9635(98)00270-2CrossRefGoogle Scholar
  43. 43.
    L. Wang, B. Shen, F. Sun, Z. Zhang, Effect of pressure on the growth of boron and nitrogen doped HFCVD diamond films on WC-Co substrate. Surf. Interface Anal. 47(5), 572–586 (2015).  https://doi.org/10.1002/sia.5748
  44. 44.
    P. Hartmann, S. Bohr, R. Haubner, B. Lux, P. Wurzinger, P. Wurzinger, M. Griesser, A. Bergmaier, G. Dolling, H. Sternschulte, R. Sauer, Diamond growth with boron addition. Inter. J. Refr. Metals Hard Mater. 16(3), 223–232 (1998).  https://doi.org/10.1016/S0263-4368(98)00022-5CrossRefGoogle Scholar
  45. 45.
    H. Liu, D. Dandy, Diamond Chemical Vapor Deposition (Elsevier, Amsterdam, 1996)Google Scholar
  46. 46.
    K. Spear, J. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology (Wiley, London, 1994)Google Scholar
  47. 47.
    T. Van Regemorter, K. Larsson, Effect of substitutional N on important chemical vapor deposition diamond growth steps. J. Phys. Chem. A 113(13), 3274–3284 (2009). doi:CVDEFXGoogle Scholar
  48. 48.
    Z. Yiming, F. Larsson, K. Larsson, Effect of CVD diamond growth by doping with nitrogen. Theor. Chem. Acc. 133(2), 1432.  https://doi.org/10.1007/s00214-013-1432-y
  49. 49.
    C.J. Chu, R.H. Hauge, J.L. Margrave, M.P. D’Evelyn, Growth kinetics of (100), (110), and (111) homoepitaxial diamond films. Appl. Phys. Lett. 61, 1393 (1992).  https://doi.org/10.1063/1.107548CrossRefGoogle Scholar
  50. 50.
    K. Larsson, J.-O. Carlsson, Surface migration during diamond growth studied by molecular orbital calculations. Phys. Rev. B 59, 8315 (1999).  https://doi.org/10.1103/PhysRevB.59.8315CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry-Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations