Advertisement

Surface-Modification of Nanodiamond by Amphiphilic Materials: Formation of Single Particle Layer and Polymer-Based Nanocomposite

  • Takeru Yunoki
  • Atsuhiro FujimoriEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

In this chapter, it focusses on nanodiamond. Nanodiamond is a type of diamond, which is a type of nano-carbon materials. In other words, nanodiamond is an allotrope of nano-carbon materials as same of fullerenes, carbon nanotubes, and graphene. The nanodiamond have universal properties of other nano-carbons typified by like an excellent thermal conductivity and also have antimicrobial properties and high refractive index properties at the same time. On the other hand, like other nanocarbons, it has extremely remarkable aggregation properties. Although it is a substance of a sphere with a minimum primary particle diameter at 5 nm prepared by detonation method, its outermost surface is covered with an adsorbed water nanolayer in order to stabilize the structure. As a result, it is dispersed in an aqueous solution, but it is difficult to disperse in an organic solvent or an organic polymer. Therefore, in this chapter, it will introduce a variety of research examples by surface modification to change nanodiamond into a easier-to-use material.

Keywords

Organo-Modification Single particle layer Layered organization of particles Transparent nanohybrid formation with polymers Nanodispersion in organic solution 

Notes

Acknowledgements

The authors appreciate Prof. Shuichi Akasaka, Tokyo Institute of Technology for research collaboration in many related works. Further, authors also thank Dr. Yuji Shitara, Mr. Akira Tada, Mr. Takumi Yamamoto, Mr. Tatsuki Nakajima, JXTG Energy Co. Ltd., for useful discussion. In addition, authors appreciate Mr. Koichi Umemoto, and Dr. Daisuke Shiro, DAICEL Co. Ltd., for the providing of nanodiamond samples. Finally, authors thank Prof. Tomofumi Ugai, Bio-nano electronics research center, Toyo University, for the lecture of DLS measurement.

References

  1. 1.
    S. Abele, D. Seebach, Preparation of achiral and of enantiopure geminally disubstituted beta-amino acids for beta-peptide synthesis. Eur. J. Org. Chem. 1, 1–15 (2000)Google Scholar
  2. 2.
    Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem. Int. Ed. 53, 11926–119230 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Fenniri, B.L. Deng, A.E. Ribbe, Helical rosette nanotubes with tunable chiroptical properties. J. Am. Chem. Soc. 124, 11064–11072 (2002)CrossRefGoogle Scholar
  4. 4.
    W.J. Chung, J.W. Oh, K. Kwak, B.Y. Lee, J. Meyer, E. Wang, A. Hexemer, S.W. Lee, Biomimetic self-templating supramolecular structures. Nature 478, 364–368 (2011)CrossRefGoogle Scholar
  5. 5.
    E. Baer, A. Hiltner, H.D. Keith, Hierarchical structure in polymeric materials. Science 235, 1015–1022 (1987)CrossRefGoogle Scholar
  6. 6.
    J. Ruokolainen, G. Ten Brinke, O. Ikkala, Supramolecular polymeric materials with hierarchical structure-within-structure morphologies. Adv. Mater. 11, 777–780 (1999)CrossRefGoogle Scholar
  7. 7.
    A. Keller, Philos. Mag. 2, 1171–1175 (1957)Google Scholar
  8. 8.
    P.H. Till, J. Polym. Sci. 24, 301–306 (1957)CrossRefGoogle Scholar
  9. 9.
    E.W.Z. Fischer, Naturforsch. 12(a), 753–754 (1957)Google Scholar
  10. 10.
    J.D. Hoffman, R.L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38, 3151–3212 (1997)CrossRefGoogle Scholar
  11. 11.
    P.J. Barham, A. Keller, E.L. Otun, P.A. Holmes, Crystallization and morphology of a bacterial thermoplastic—poly-3-hydroxybutyrate. J. Mater. Sci. 19, 2781–2794 (1984)CrossRefGoogle Scholar
  12. 12.
    S.J. George, A. Ajayaghosh, Self-assembled nanotapes of oligo(p-phenylene vinylene)s: Sol-gel controlled optical properties in fluorescent π-electronic gels. Chem. Eur. J. 11, 3217–3227 (2005)CrossRefGoogle Scholar
  13. 13.
    S.H. Tolbert, P. Sieger, G.D. Stucky, S.M.J. Aubin, C.C. Wu, D.N. Hendrickson, Control of inorganic layer thickness in self-assembled iron oxide surfactant composites. J. Am. Chem. Soc. 119, 8652–8661 (1997)Google Scholar
  14. 14.
    T. Kanehira, Y. Soutome, N. Honda, S. Akasaka, A. Fujimori, Mono-particle dispersion of organo-modified nanodiamond in fluoropolymer matrix of crystalline transparent films of semifluorinated polymer/filler nanocomposite. Trans. Mat. Res. Soc. Japan 39, 231–234 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Fujimori, Y. Kasahara, N. Honda, S. Akasaka, The role of modifying molecular chains in the formation of organized molecular films of organo-modified nanodiamond. Construction of a highly-ordered low defect particle layer, and evaluation of desorption behavior of organic chains–. Langmuir 31, 2895–2904 (2015)Google Scholar
  16. 16.
    M.A.A. Mamun, Y. Soutome, Y. Kasahara, Q. Meng, S. Akasaka, A. Fujimori, Fabrication of transparent nanohybrids with heat resistance using high-density amorphous formation and uniform dispersion of nanodiamond. ACS Appl. Mater. Interfaces. 7, 17792–17801 (2015)CrossRefGoogle Scholar
  17. 17.
    M.A.A. Mamun, Y. Kasahara, T. Tasaki, A. Fujimori, Spherulitic formation and characterization of partially fluorinated copolymers and their nanohybrids with functional fillers. Polym. Eng. Sci. 57, 161–171 (2017)CrossRefGoogle Scholar
  18. 18.
    T. Tasaki, Y. Guo, Q. Meng, M.A.A. Mamun, Y. Kasahara, S. Akasaka, A. Fujimori, Dependency of nanodiamond particle size and outermost-surface composition on organo-modification—evaluation by formation of organized molecular films and nano-hybridization with organic polymers. ACS Appl. Mater. Interfaces. 9, 14379–14390 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Kasahara, Y. Guo, T. Tasaki, Q. Meng, M.A.A. Mamun, M. Iizuka, S. Akasaka, A. Fujimori, Nano-dispersion in transparent polymer matrix with high melting temperature contributing to hybridization of heat-resistant organo-modified nanodiamond. Polym. Bull. 75, 4145–4163 (2018)CrossRefGoogle Scholar
  20. 20.
    T. Tasaki, Y. Guo, H. Machida, S. Akasaka, A. Fujimori, Nano-dispersion of fluorinated phosphonate-modified nanodiamond in crystalline fluoropolymer matrix of polymer/nanofiller transparent hybrid. Polym. Compos. 39, (2018). in press.  https://doi.org/10.1002/pc.25047
  21. 21.
    Y. Guo, K. Fukushi, S. Hirayama, H. Machida, Q. Meng, S. Akasaka, A. Fujimori, Thermal stability of ordered multi-particle layers of long-chain phosphonate-modified nanodiamond with superior heat-resistance. Colloids Surf. A 556, 227–238 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Machida, Y. Abiko, S. Hirayama, Q. Meng, S. Akasaka, A. Fujimori, Correlation between nanodispersion of organo-modified nanodiamond in solvent and condensed behavior of their organized particle films. Colloids Surf. A (2018). in press.  https://doi.org/10.1016/j.colsurfa.2018.11.003

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of Science and EngineeringSaitama UniversitySakura-ku, SaitamaJapan

Personalised recommendations