Advertisement

Homoepitaxial Diamond Growth by Plasma-Enhanced Chemical Vapor Deposition

  • Norio TokudaEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

Both carbon and silicon are group IV members, but carbon has the smaller atomic number. Diamond, with the same crystalline structure as that of silicon, is expected to act as the basic material for the next generation of high-power electronic, optoelectronic, bio/chemical electronic, quantum computing devices, etc. This is because diamond exhibits electrical properties similar to those of silicon, while having superior physical properties. In this chapter, the author reviewed and discussed the homoepitaxial growth of high-quality single-crystal diamond films with atomically flat surfaces, by using plasma-enhanced chemical vapor deposition (PECVD).

Keywords

Homoepitaxial growth Plasma-enhanced CVD Atomically flat surface Growth mode Growth mechanism Doping Step-terrace structure Step-free surface 

Notes

Acknowledgements

The author sincerely thanks Dr. Satoshi Yamasaki, Dr. Hideyo Okushi, Dr. Daisuke Takeuchi, Dr. Masahiko Ogura, Dr. Toshiharu Makino, Dr. Hiromitsu Kato, Dr. Hitoshi Umezawa, Dr. Takehide Miyazaki of the National Institute of Advanced Industrial Science and Technology; Dr. Sung-Gi Ri of the National Institute for Materials Science; and Professor Takao Inokuma, Assistant Professor Tsubasa Matsumoto of Kanazawa University for fruitful discussions. This study was partly supported by JSPS KAKENHI Grant Numbers JP24686074, JP 17H02786, JP 17K18980, 18H03870 and the Adaptable and Seamless Technology Transfer Program through target-driven R&D, JST, and Kanazawa University SAKIGAKE Project 2018.

References

  1. 1.
    B.V. Spitsyn, L.L. Bouilov, B.V. Derjaguin, Vapor growth of diamond on diamond and other surfaces. J. Cryst. Growth 52, 219–226 (1981).  https://doi.org/10.1016/0022-0248(81)90197-4CrossRefGoogle Scholar
  2. 2.
    S. Matsumoto, Y. Sato, M. Kamo, N. Setaka, Vapor deposition of diamond particles from methane. Jpn. J. Appl. Phys. 21, L183–L185 (1982).  https://doi.org/10.1143/JJAP.21.L183CrossRefGoogle Scholar
  3. 3.
    M. Kamo, Y. Sato, S. Matsumoto, N. Setaka, Diamond synthesis from gas phase in microwave plasma. J. Cryst. Growth 62, 642–644 (1983).  https://doi.org/10.1016/0022-0248(83)90411-6CrossRefGoogle Scholar
  4. 4.
    M. Kamo, H. Yurimoto, Epitaxial growth of diamond on diamond substrate by plasma assisted CVD. Appl. Surf. Sci. 33(34), 553–560 (1988).  https://doi.org/10.1016/0169-4332(88)90352-2CrossRefGoogle Scholar
  5. 5.
    D.G. Goodwin, J. E. Butler, in Handbook of Industrial Diamond and Diamond Films, ed. by M.A. Prelas, G. Popovici, L.K. Biglow (Marcel Dekker, Inc., NY, 1997), p. 527Google Scholar
  6. 6.
    T. Teraji, in Physics and Applications of CVD Diamond, ed. by S. Koizumi, C.E. Nebel, M. Nesladek (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), p. 29Google Scholar
  7. 7.
    J.E. Butler, A. Cheesman, M.N.R. Ashfold, in CVD Diamond for Electronic Devices and Sensors, ed. by R.S. Sussmann (Wiley, UK, 2009), p. 103Google Scholar
  8. 8.
    J.E. Butler, Y.A. Mankelevich, A. Cheesman, J. Ma, M.N.R. Ashfold, Understanding the chemical vapor deposition of diamond: recent progress. J. Phys. Cond. Mat. 21, 364201 (2009).  https://doi.org/10.1002/pssa.200777501
  9. 9.
    O.A. Williams, R.B. Jackman, High growth rate MWPECVD of single crystal diamond. Diam. Relat. Mater. 13, 557–560 (2004).  https://doi.org/10.1016/j.diamond.2004.01.023CrossRefGoogle Scholar
  10. 10.
    J. Achard, F. Silva, O. Brinza, A. Tallaire, A. Gicquel, Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals. Diam. Relat. Mater. 16, 685–689 (2007).  https://doi.org/10.1016/j.diamond.2006.09.012CrossRefGoogle Scholar
  11. 11.
    H. Yamada, A. Chayahara, Y. Mokuno, S. Shikata, Numerical and experimental studies of high growth-rate over area with 1-inch in diameter under moderate input-power by using MWPCVD. Diam. Relat. Mater. 17, 1062–1066 (2008).  https://doi.org/10.1016/j.diamond.2008.01.045CrossRefGoogle Scholar
  12. 12.
    Q. Liang, C.Y. Chin, J. Lai, C. Yan, Y. Meng, H. Mao, R.J. Hemley, Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl. Phys. Lett. 94, 024103 (2009).  https://doi.org/10.1063/1.3072352CrossRefGoogle Scholar
  13. 13.
    Y. Gu, J. Lu, T. Grotjohn, T. Schuelke, J. Asmussen, Microwave plasma reactor design for high pressure and high power density diamond synthesis. Diam. Relat. Mater. 24, 210–214 (2012).  https://doi.org/10.1016/j.diamond.2012.01.026CrossRefGoogle Scholar
  14. 14.
    Y. Su, H.D. Li, S.H. Cheng, Q. Zhang, Q.L. Wang, X.Y. Lv, G.T. Zou, X.Q. Pei, J.G. Xie, Effect of N2O on high-rate homoepitaxial growth of CVD single crystal diamonds. J. Cryst. Growth 351, 51–55 (2012).  https://doi.org/10.1016/j.jcrysgro.2012.03.041CrossRefGoogle Scholar
  15. 15.
    J. Lu, Y. Gu, T.A. Grotjohn, T. Schuelke, J. Asmussen, Experimentally defining the safe and efficient, high pressure microwave plasma assisted CVD operating regime for single crystal diamond synthesis. Diam. Relat. Mater. 37, 17–28 (2013).  https://doi.org/10.1016/j.diamond.2013.04.007CrossRefGoogle Scholar
  16. 16.
    N. Fujimori, T. Imai, A. Doi, Characterization of conducting diamond films. Vacuum 36, 99–102 (1986).  https://doi.org/10.1016/0042-207X(86)90279-4CrossRefGoogle Scholar
  17. 17.
    N. Fujimori, H. Nakahata, T. Imai, Properties of boron-doped epitaxial diamond films. Jpn. J. Appl. Phys. 29, 824–827 (1990).  https://doi.org/10.1143/JJAP.29.824CrossRefGoogle Scholar
  18. 18.
    S. Yamanaka, D. Takeuchi, H. Watanabe, H. Okushi, K. Kajimura, Low-compensated boron-doped homoepitaxial diamond films using trimethylboron. Phys. Stat. Sol. (a) 174, 59–64 (1999).  https://doi.org/10.1002/(SICI)1521-396X(199907)CrossRefGoogle Scholar
  19. 19.
    T. Tsubota, T. Fukui, M. Kameta, T. Saito, K. Kusakabe, S. Morooka, H. Maeda, Effect of total reaction pressure on electrical properties of boron doped homoepitaxial (100) diamond films formed by microwave plasma-assisted chemical vapor deposition using trimethylboron. Diam. Relat. Mater. 8, 1079–1082 (1999).  https://doi.org/10.1016/S0925-9635(99)00096-5CrossRefGoogle Scholar
  20. 20.
    S. Ri, H. Kato, M. Ogura, H. Watanabe, T. Makino, S. Yamasaki, H. Okushi, Electrical and optical characterization of boron-doped (111) homoepitaxial diamond films. Diam. Relat. Mater. 14, 1964–1968 (2005).  https://doi.org/10.1016/j.diamond.2005.06.032CrossRefGoogle Scholar
  21. 21.
    C. Baron, M. Wade, A. Deneuville, F. Jomard, J. Chevallier, Cathodoluminescence of highly and heavily boron doped (100) homoepitaxial diamond films. Diam. Relat. Mater. 15, 597–601 (2006).  https://doi.org/10.1016/j.diamond.2006.01.015CrossRefGoogle Scholar
  22. 22.
    T. Teraji, H. Wada, M. Yamamoto, K. Arima, T. Ito, Highly efficient doping of boron into high-quality homoepitaxial diamond films. Diam. Relat. Mater. 15, 602–606 (2006).  https://doi.org/10.1016/j.diamond.2006.01.011CrossRefGoogle Scholar
  23. 23.
    T. Teraji, Chemical vapor deposition of homoepitaxial diamond films. Phys. Stat. Sol. (a) 203, 3324–3357 (2006).  https://doi.org/10.1002/pssa.200671408CrossRefGoogle Scholar
  24. 24.
    V. Mortet, M. Daenen, T. Teraji, A. Lazea, V. Vorlicek, J. D’Haen, K. Haenen, M. D’Olieslaeger, Characterization of boron doped diamond epilayers grown in a NIRIM type reactor. Diam. Relat. Mater. 17, 1330–1334 (2008).  https://doi.org/10.1016/j.diamond.2008.01.087CrossRefGoogle Scholar
  25. 25.
    J. Barjon, N. Habka, C. Mer, F. Jormard, J. Chevallier, P. Bergonzo, Resistivity of boron doped diamond. Phys. Stat. Sol. RRL 3, 202–204 (2009).  https://doi.org/10.1002/pssr.200903097CrossRefGoogle Scholar
  26. 26.
    J. Pernot, P.N. Volpe, F. Omnès, P. Muret, Hall hole mobility in boron-doped homoepitaxial diamond. Phys. Rev. B 81, 205203 (2010).  https://doi.org/10.1103/PhysRevB.81.205203CrossRefGoogle Scholar
  27. 27.
    F. Omnès, P. Muret, P.N. Volpe, M. Wade, J. Pernot, F. Jomard, Study of boron doping in MPCVD grown homoepitaxial diamond layers based on cathodoluminescence spectroscopy, secondary ion mass spectroscopy and capacitance–voltage measurements. Diam. Relat. Mater. 20, 912–916 (2011).  https://doi.org/10.1016/j.diamond.2011.05.010CrossRefGoogle Scholar
  28. 28.
    M. Ogura, H. Kato, T. Makino, H. Okushi, S. Yamasaki, J. Misorientation-angle dependence of boron incorporation into (0 0 1)-oriented chemical-vapor-deposited (CVD) diamond. J. Cryst. Growth 317, 60–63 (2011).  https://doi.org/10.1016/j.jcrysgro.2011.01.010
  29. 29.
    M.E. Belousov, Y.A. Mankelevich, P.V. Minakov, A.T. Rakhimov, N.V. Suetin, R.A. Khmelnitskiy, A.A. Tal, A.V. Khomich, Boron-doped homoepitaxial diamond CVD from microwave plasma-activated ethanol/trimethyl borate/hydrogen mixtures. Chem. Vap. Depos. 18, 302–308 (2012).  https://doi.org/10.1002/cvde.201206993CrossRefGoogle Scholar
  30. 30.
    J. Achard, R. Issaoui, A. Tallaire, F. Silva, J. Barjon, F. Jomard, A. Gicquel, Freestanding CVD boron doped diamond single crystals: a substrate for vertical power electronic devices? Phys. Stat. Sol. (a) 209, 1651–1658 (2012).  https://doi.org/10.1002/pssa.201200045CrossRefGoogle Scholar
  31. 31.
    A. Lazea, Y. Garino, T. Teraji, S. Koizumi, High quality p-type chemical vapor deposited {111}-oriented diamonds: growth and fabrication of related electrical devices. Phys. Stat. Sol. (a) 209, 1978–1981 (2012).  https://doi.org/10.1002/pssa.201228162CrossRefGoogle Scholar
  32. 32.
    S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Growth and characterization of phosphorous doped 111 homoepitaxial diamond thin films. Appl. Phys. Lett. 71, 1065–1067 (1997).  https://doi.org/10.1063/1.119729CrossRefGoogle Scholar
  33. 33.
    S. Koizumi, T. Teraji, H. Kanda, Phosphorus-doped chemical vapor deposition of diamond. Diam. Relat. Mater. 9, 935–940 (2000).  https://doi.org/10.1016/S0925-9635(00)00217-XCrossRefGoogle Scholar
  34. 34.
    M. Katagiri, J. Isoya, S. Koizumi, H. Kanda, Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition. Appl. Phys. Lett. 85, 6365–6367 (2004).  https://doi.org/10.1063/1.1840119CrossRefGoogle Scholar
  35. 35.
    M. Suzuki, H. Yoshida, N. Sakuma, T. Ono, T. Sakai, S. Koizumi, Electrical characterization of phosphorus-doped n-type homoepitaxial diamond layers by Schottky barrier diodes. Appl. Phys. Lett. 84, 2349–2351 (2004).  https://doi.org/10.1063/1.1695206CrossRefGoogle Scholar
  36. 36.
    M. Suzuki, S. Koizumi, M. Katagiri, H. Yoshida, N. Sakuma, T. Ono, T. Sakai, Electrical characterization of phosphorus-doped n-type homoepitaxial diamond layers. Diam. Relat. Mater. 13, 2037–2040 (2004).  https://doi.org/10.1016/j.diamond.2004.06.022CrossRefGoogle Scholar
  37. 37.
    H. Kato, S. Yamasaki, H. Okushi, n-type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl. Phys. Lett. 86, 222111 (2005).  https://doi.org/10.1063/1.1944228CrossRefGoogle Scholar
  38. 38.
    S. Koizumi, M. Suzuki, n-Type doping of diamond. Phys. Stat. Sol. (a) 203, 3358–3366 (2006).  https://doi.org/10.1002/pssa.200671407CrossRefGoogle Scholar
  39. 39.
    H. Kato, T. Makino, S. Yamasaki, H. Okushi, n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D Appl. Phys. 40, 6189–6200 (2007).  https://doi.org/10.1088/0022-3727/40/20/s05CrossRefGoogle Scholar
  40. 40.
    J. Perot, S. Koizumi, Electron mobility in phosphorous doped {111} homoepitaxial diamond. Appl. Phys. Lett. 93, 052105 (2008).  https://doi.org/10.1063/1.2969066CrossRefGoogle Scholar
  41. 41.
    H. Kato, D. Takeuchi, N. Tokuda, H. Umezawa, S. Yamasaki, H. Okushi, Electrical activity of doped phosphorus atoms in (001) n-type diamond. Phys. Stat. Sol. (a) 205, 2195–2199 (2008).  https://doi.org/10.1002/pssa.200879722CrossRefGoogle Scholar
  42. 42.
    M.-A. Pinault-Thaury, B. Berini, I. Sternger, E. Chikoidze, A. Lusson, F. Jomard, J. Chevallier, J. Barjon, High fraction of substitutional phosphorus in a (100) diamond epilayer with low surface roughness. Appl. Phys. Lett. 100, 192109 (2012).  https://doi.org/10.1063/1.4712617
  43. 43.
    S. Koizumi, K. Watanabe, M. Hasegawa, H. Kanda, Ultraviolet emission from a diamond pn junction. Science 292, 1899–1901 (2001).  https://doi.org/10.1126/science.1060258CrossRefGoogle Scholar
  44. 44.
    H. Okushi, High quality homoepitaxial CVD diamond for electronic devices. Diam. Relat. Mater. 10, 281–288 (2001).  https://doi.org/10.1016/S0925-9635(00)00399-XCrossRefGoogle Scholar
  45. 45.
    T. Makino, N. Tokuda, H. Kato, M. Ogura, H. Watanabe, S. Ri, S. Yamasaki, H. Okushi, High-efficiency excitonic emission with deep-ultraviolet light from (001)-oriented diamond p-i-n junction. Jpn. J. Appl. Phys. 45, L1042–L1044 (2006).  https://doi.org/10.1143/jjap.45.l1042CrossRefGoogle Scholar
  46. 46.
    D. Shin, N. Tokuda, B. Rezek, C.E. Nebel, Periodically arranged benzene-linker molecules on boron-doped single-crystalline diamond films for DNA sensing. Electrochem. Commun. 8, 844–850 (2006).  https://doi.org/10.1016/j.elecom.2006.03.014CrossRefGoogle Scholar
  47. 47.
    D. Shin, B. Rezek, N. Tokuda, D. Takeuchi, H. Watanabe, T. Nakamura, T. Yamamoto, C.E. Nebel, Photo- and electrochemical bonding of DNA to single crystalline CVD diamond. Phys. Stat. Sol. (a) 203, 3245–3272 (2006).  https://doi.org/10.1002/pssa.200671402CrossRefGoogle Scholar
  48. 48.
    H. Umezawa, N. Tokuda, M. Ogura, S. Ri, S. Shikata, Characterization of leakage current on diamond Schottky barrier diodes using thermionic-field emission modeling. Diam. Relat. Mater. 15, 1949–1953 (2006).  https://doi.org/10.1016/j.diamond.2006.08.030CrossRefGoogle Scholar
  49. 49.
    K.-S. Song, T. Hiraki, H. Umezawa, H. Kawarada, Miniaturized diamond field-effect transistors for application in biosensors in electrolyte solution. Appl. Phys. Lett. 90, 063901 (2007).  https://doi.org/10.1063/1.2454390CrossRefGoogle Scholar
  50. 50.
    E. Kohn, A. Denisenko, Concepts for diamond electronics. Thin Solid Films 515, 4333–4339 (2007).  https://doi.org/10.1016/j.tsf.2006.07.179CrossRefGoogle Scholar
  51. 51.
    M. Liao, Y. Koide, J. Alvarez, Single Schottky-barrier photodiode with interdigitated-finger geometry: application to diamond. Appl. Phys. Lett. 90, 123507 (2007).  https://doi.org/10.1063/1.2715440CrossRefGoogle Scholar
  52. 52.
    T. Makino, N. Tokuda, H. Kato, M. Ogura, H. Watanabe, S. Ri, S. Yamasaki, H. Okushi, Electrical and light-emitting properties of (001)-oriented homoepitaxial diamond p–i–n junction. Diam. Relat. Mater. 16, 1025–1028 (2007).  https://doi.org/10.1016/j.diamond.2007.01.024CrossRefGoogle Scholar
  53. 53.
    C.E. Nebel, D. Shin, B. Rezek, N. Tokuda, H. Uetsuka, H. Watanabe, Diamond and biology. J. R. Soc. Interface 4, 439–461 (2007).  https://doi.org/10.1098/rsif.2006.0196CrossRefGoogle Scholar
  54. 54.
    H. Umezawa, T. Saito, N. Tokuda, M. Ogura, S. Ri, H. Yoshikawa, S. Shikata, Leakage current analysis of diamond Schottky barrier diode. Appl. Phys. Lett. 90, 073506 (2007).  https://doi.org/10.1063/1.2643374CrossRefGoogle Scholar
  55. 55.
    T. Makino, N. Tokuda, H. Kato, S. Kanno, S. Yamasaki, H. Okushi, Electrical and light-emitting properties of homoepitaxial diamond p-i-n junction. Phys. Stat. Sol. (a) 205, 2200–2206 (2008).  https://doi.org/10.1002/pssa.200879717CrossRefGoogle Scholar
  56. 56.
    T. Makino, S. Tanimoto, Y. Hayashi, H. Kato, N. Tokuda, M. Ogura, D. Takeuchi, K. Oyama, H. Ohashi, H. Okushi, S. Yamasaki, Diamond Schottky-pn diode with high forward current density and fast switching operation. Appl. Phys. Lett. 94, 262101 (2009).  https://doi.org/10.1063/1.3159837CrossRefGoogle Scholar
  57. 57.
    T. Makino, S. Ri, N. Tokuda, H. Kato, S. Yamasaki, H. Okushi, Electrical and light-emitting properties from (111)-oriented homoepitaxial diamond p–i–n junctions. Diam. Relat. Mater. 18, 764–767 (2009).  https://doi.org/10.1016/j.diamond.2009.01.016CrossRefGoogle Scholar
  58. 58.
    K. Oyama, S. Ri, H. Kato, M. Ogura, T. Makino, D. Takeuchi, N. Tokuda, H. Okushi, S. Yamasaki, High performance of diamond p[sup +]-i-n[sup +] junction diode fabricated using heavily doped p+ and n+ layers. Appl. Phys. Lett. 94, 152109 (2009).  https://doi.org/10.1063/1.3120560CrossRefGoogle Scholar
  59. 59.
    P.-N. Volpe, P. Muret, J. Pernot, F. Omnès, T. Teraji, Y. Koide, F. Jomard, D. Planson, P. Brosselard, N. Dheilly, B. Vergne, S. Scharnholz, Extreme dielectric strength in boron doped homoepitaxial diamond. Appl. Phys. Lett. 97, 223501 (2010).  https://doi.org/10.1063/1.3520140CrossRefGoogle Scholar
  60. 60.
    R. Hoffmann, A. Kriele, H. Obloh, N. Tokuda, W. Smirnov, N. Yang, C.E. Nebel, The creation of a biomimetic interface between boron-doped diamond and immobilized proteins. Biomaterials 32, 7325–7332 (2011).  https://doi.org/10.1016/j.biomaterials.2011.06.052CrossRefGoogle Scholar
  61. 61.
    T. Kawae, Y. Hori, T. Nakajima, H. Kawasaki, N. Tokuda, S. Okamura, Y. Takano, A. Morimoto, Structure and electrical properties of (Pr, Mn)-codoped BiFeO3∕B-doped diamond layered structure. Electrochem. Solid-State Lett. 15, G31–G34 (2011).  https://doi.org/10.1149/1.3568838CrossRefGoogle Scholar
  62. 62.
    H. Kawarada, A.R. Ruslinda, Diamond electrolyte solution gate FETs for DNA and protein sensors using DNA/RNA aptamers. Phys. Stat. Sol. (a) 208, 2005–2016 (2011).  https://doi.org/10.1002/pssa.201100503CrossRefGoogle Scholar
  63. 63.
    R. Hoffmann, H. Obloh, N. Tokuda, N. Yang, C.E. Nebel, Fractional surface termination of diamond by electrochemical oxidation. Langmuir 28, 47–50 (2012).  https://doi.org/10.1021/la2039366CrossRefGoogle Scholar
  64. 64.
    T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, T. Matsumoto, H. Okushi, S. Yamasaki, M. Hatano, Diamond junction field-effect transistors with selectively grown n+-side gates. Appl. Phys. Express 5, 091301 (2012).  https://doi.org/10.1143/apex.5.091301CrossRefGoogle Scholar
  65. 65.
    H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, Diamond bipolar junction transistor device with phosphorus-doped diamond base layer. Diam. Relat. Mater. 27–28, 19–22 (2012).  https://doi.org/10.1016/j.diamond.2012.05.004CrossRefGoogle Scholar
  66. 66.
    T. Kawae, H. Kawasaki, T. Nakajima, N. Tokuda, S. Okamura, A. Morimoto, Y. Takano, Fabrication of (Bi,Pr)(Fe,Mn)O3 thin films on polycrystalline diamond substrates by chemical solution deposition and their properties. Jpn. J. Appl. Phys. 51, 09LA08 (2012).  https://doi.org/10.1143/jjap.51.09la08
  67. 67.
    R. Edgington, A.R. Ruslinda, S. Sato, Y. Ishiyama, K. Tsuge, T. Ono, H. Kawarada, R.B. Jackman, Boron delta-doped (111) diamond solution gate field effect transistors. Biosens. Bioelectron. 33, 152–157 (2012).  https://doi.org/10.1016/j.bios.2011.12.044CrossRefGoogle Scholar
  68. 68.
    H. Kawarada, High-current metal oxide semiconductor field-effect transistors on H-terminated diamond surfaces and their high-frequency operation. Jpn. J. Appl. Phys. 51, 090111 (2012).  https://doi.org/10.1143/jjap.51.090111CrossRefGoogle Scholar
  69. 69.
    T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, S. Yamasaki, Device design of diamond Schottky-pn diode for low-loss power electronics. Jpn. J. Appl. Phys. 51, 090116 (2012).  https://doi.org/10.1143/jjap.51.090116CrossRefGoogle Scholar
  70. 70.
    S. Cheng, L. Sang, M. Liao, J. Liu, M. Imura, H. Li, Y. Koide, Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices. Appl. Phys. Lett. 101, 232907 (2012).  https://doi.org/10.1063/1.4770059CrossRefGoogle Scholar
  71. 71.
    N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).  https://doi.org/10.1038/nphoton.2012.75CrossRefGoogle Scholar
  72. 72.
    M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, Y. Koide, Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Jpn. J. Appl. Phys. 51, 090115 (2012).  https://doi.org/10.1143/jjap.51.090115CrossRefGoogle Scholar
  73. 73.
    D. Takeuchi, T. Makino, H. Kato, M. Ogura, H. Okushi, H. Ohashi, S. Yamasaki, High-voltage vacuum switch with a diamond p–i–n diode using negative electron affinity. Jpn. J. Appl. Phys. 51, 090113 (2012).  https://doi.org/10.1143/jjap.51.090113CrossRefGoogle Scholar
  74. 74.
    H. Umezawa, M. Nagase, Y. Kato, S. Shikata, High temperature application of diamond power device. Diam. Relat. Mater. 24, 201–205 (2012).  https://doi.org/10.1016/j.diamond.2012.01.011CrossRefGoogle Scholar
  75. 75.
    G. Chicot, A. Marèchal, R. Motte, P. Muret, E. Gheeraert, J. Pernot, Metal oxide semiconductor structure using oxygen-terminated diamond. Appl. Phys. Lett. 102, 242108 (2013).  https://doi.org/10.1063/1.4811668CrossRefGoogle Scholar
  76. 76.
    T. Matsumoto, H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi, T. Inokuma, N. Tokuda, S. Yamasaki, Inversion channel diamond metal-oxide-semiconductor field-effect-transistor with normally off characteristics. Sci. Rep. 6, 31585 (2016).  https://doi.org/10.1038/srep31585CrossRefGoogle Scholar
  77. 77.
    T. Matsumoto, T. Mukose, T. Makino, D. Takeuchi, S. Yamasaki, T. Inokuma, N. Tokuda, Diamond Schottky-pn diode using lightly nitrogen-doped layer. Diam. Relat. Mater. 75, 152–154 (2017).  https://doi.org/10.1016/j.diamond2017.03.018CrossRefGoogle Scholar
  78. 78.
    A. Gicquel, K. Hassouni, S. Farhat, Y. Breton, C.D. Scott, M. Lefebvre, M. Pealat, Spectroscopic analysis and chemical kinetics modeling of a diamond deposition plasma reactor. Diam. Relat. Mater. 3, 581–586 (1994).  https://doi.org/10.1016/0925-9635(94)90229-1CrossRefGoogle Scholar
  79. 79.
    C. Benndorf, P. Joeris, R. Kröger, Mass and optical emission spectroscopy of plasmas for diamond synthesis. Pure Appl. Chem. 66, 1195–1205 (1994).  https://doi.org/10.1351/pac199466061195CrossRefGoogle Scholar
  80. 80.
    T. Fujii, M. Kareev, Mass spectrometric studies of a CH4/H2 microwave plasma under diamond deposition conditions. J. Appl. Phys. 89, 2543–2546 (2001).  https://doi.org/10.1063/1.1346655CrossRefGoogle Scholar
  81. 81.
    P. Deák, A. Kováts, P. Csíkváry, I. Maros, G. Hárs, Ethynyl (C2H): a major player in the chemical vapor deposition of diamond. Appl. Phys. Lett. 90, 051503 (2007).  https://doi.org/10.1063/1.2437718CrossRefGoogle Scholar
  82. 82.
    H. Zhou, J. Watanabe, M. Miyake, A. Ogino, M. Nagatsu, R. Zhan, Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition. Diam. Relat. Mater. 16, 675–678 (2007).  https://doi.org/10.1016/j.diamond.2006.11.074CrossRefGoogle Scholar
  83. 83.
    J. Ma, M.N.R. Ashfold, Y.A. Mankelevich, Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition. J. Appl. Phys. 105, 043302 (2009).  https://doi.org/10.1063/1.3078032CrossRefGoogle Scholar
  84. 84.
    A. Gicquel, N. Derkaoui, C. Rond, F. Benedic, G. Cicala, D. Moneger, K. Hassouni, Quantitative analysis of diamond deposition reactor efficiency. Chem. Phys. 398, 239–247 (2012).  https://doi.org/10.1016/j.chemphys.2011.08.022CrossRefGoogle Scholar
  85. 85.
    J.C. Richley, M.W. Kelly, M.N.R. Ashfold, Y.A. Mankelevich, Optical emission from microwave activated C/H/O gas mixtures for diamond chemical vapor deposition. J. Phys. Chem. A 116, 9447–9458 (2012).  https://doi.org/10.1021/jp306191yCrossRefGoogle Scholar
  86. 86.
    P. Bou, J.C. Boettner, L. Vandenbulcke, Kinetic calculations in plasmas used for diamond deposition. Jpn. J. Appl. Phys. 31, 1505–1513 (1992).  https://doi.org/10.1143/JJAP.31.1505CrossRefGoogle Scholar
  87. 87.
    M.C. McMaster, W.L. Hsu, M.E. Coltrin, D.S. Dandy, C. Fox, Dependence of the gas composition in a microwave plasma-assisted diamond chemical vapor deposition reactor on the inlet carbon source: CH4 versus C2H2. Diam. Relat. Mater. 4, 1000–1008 (1995).  https://doi.org/10.1016/0925-9635(95)00270-7CrossRefGoogle Scholar
  88. 88.
    J.M. Larson, M.T. Swihart, S.L. Girshick, Characterization of the near-surface gas-phase chemical environment in atmospheric-pressure plasma chemical vapor deposition of diamond. Diam. Relat. Mater. 8, 1863–1874 (1999).  https://doi.org/10.1016/S0925-9635(99)00143-0CrossRefGoogle Scholar
  89. 89.
    O. Aubry, J.-L. Delfau, C. Met, L. Vandenbulcke, C. Vovelle, Precursors of diamond films analysed by molecular beam mass spectrometry of microwave plasmas. Diam. Relat. Mater. 13, 116–124 (2004).  https://doi.org/10.1016/j.diamond.2003.09.009CrossRefGoogle Scholar
  90. 90.
    J. Achard, F. Silva, A. Tallaire, X. Bonnin, G. Lomvardi, K. Hassouni, A. Gicquel, High quality MPACVD diamond single crystal growth: high microwave power density regime. J. Phys. D 40, 6175–6188 (2007).  https://doi.org/10.1088/0022-3727/40/20/S04CrossRefGoogle Scholar
  91. 91.
    H. Yamada, A. Chayahara, Y. Mokuno, Simplified description of microwave plasma discharge for chemical vapor deposition of diamond. J. Appl. Phys. 101, 063302 (2007).  https://doi.org/10.1063/1.2711811CrossRefGoogle Scholar
  92. 92.
    J. Ma, J.C. Richley, M.N.R. Ashfold, Y.A. Mankelevich, Probing the plasma chemistry in a microwave reactor used for diamond chemical vapor deposition by cavity ring down spectroscopy. J. Appl. Phys. 104, 103305 (2008).  https://doi.org/10.1063/1.3021095CrossRefGoogle Scholar
  93. 93.
    F. Silva, J. Achard, O. Brinza, X. Bonnin, K. Hassouni, A. Anthonis, K.D. Corte, J. Barjon, High quality, large surface area, homoepitaxial MPACVD diamond growth. Diam. Relat. Mater. 18, 683–697 (2009).  https://doi.org/10.1016/j.diamond.2009.01.038CrossRefGoogle Scholar
  94. 94.
    K. Hassouni, F. Silva, A. Gicquel, Modelling of diamond deposition microwave cavity generated plasmas. J. Phys. D 43, 153001 (2010).  https://doi.org/10.1088/0022-3727/43/15/153001CrossRefGoogle Scholar
  95. 95.
    H. Yamada, A. Chayahara, Y. Mokuno, S. Shikata, Model of reactive microwave plasma discharge for growth of single-crystal diamond. Jpn. J. Appl. Phys. 50, 01AB02 (2011).  https://doi.org/10.1143/jjap.50.01ab02
  96. 96.
    H. Yamada, Numerical simulations to study growth of single-crystal diamond by using microwave plasma chemical vapor deposition with reactive (H, C, N) species. Jpn. J. Appl. Phys. 51, 090105 (2012).  https://doi.org/10.1143/jjap.51.090105CrossRefGoogle Scholar
  97. 97.
    C.-L. Cheng, H.-C. Chang, J.-C. Lin, K.-J. Song, J.-K. Wang, Direct observation of hydrogen etching anisotropy on diamond single crystal surfaces. Phys. Rev. Lett. 78, 3713–3716 (1997).  https://doi.org/10.1103/PhysRevLett.78.3713CrossRefGoogle Scholar
  98. 98.
    H. Kuroshima, T. Makino, S. Yamasaki, T. Matsumoto, T. Inokuma, N. Tokuda, Mechanism of anisotropic etching on diamond (111) surfaces by a hydrogen plasma treatment. Appl. Surf. Sci. 422, 452–455 (2017).  https://doi.org/10.1016/j.apsusc.2017.06.005CrossRefGoogle Scholar
  99. 99.
    T. Tsuno, T. Imai, Y. Nishibayashi, K. Hamada, N. Fujimori, Epitaxially grown diamond (001) 2×1/1×2 surface investigated by scanning tunneling microscopy in air. Jpn. J. Appl. Phys. 30, 1063–1066 (1991).  https://doi.org/10.1143/JJAP.30.1063CrossRefGoogle Scholar
  100. 100.
    H. Sasaki, H. Kawarada, Structure of chemical vapor deposited diamond (111) surfaces by scanning tunneling microscopy. Jpn. J. Appl. Phys. 32, L1771–L1774 (1993).  https://doi.org/10.1143/JJAP.32.L1771CrossRefGoogle Scholar
  101. 101.
    L.F. Sutcu, C.J. Chu, M.S. Thompson, R.H. Hauge, J.L. Margrave, M.P. D’Evelyn, Atomic force microscopy of (100), (110), and (111) homoepitaxial diamond films. J. Appl. Phys. 71, 5930–5940 (1992).  https://doi.org/10.1063/1.350443CrossRefGoogle Scholar
  102. 102.
    T. Tsuno, T. Tomikawa, S. Shikata, T. Imai, N. Fujirmori, Diamond(001) single-domain 2×1 surface grown by chemical vapor deposition. Appl. Phys. Lett. 64, 572–574 (1994).  https://doi.org/10.1063/1.111107CrossRefGoogle Scholar
  103. 103.
    T. Tsuno, T. Tomikawa, S. Shikata, N. Fujimori, Diamond homoepitaxial growth on (111) substrate investigated by scanning tunneling microscope. J. Appl. Phys. 75, 1526–1529 (1994).  https://doi.org/10.1063/1.356389CrossRefGoogle Scholar
  104. 104.
    M. McGonigal, J.N. Russell Jr., P.E. Pehrsson, H.G. Maguire, J.E. Butler, Multiple internal reflection infrared spectroscopy of hydrogen adsorbed on diamond(110). J. Appl. Phys. 77, 4049–4053 (1995).  https://doi.org/10.1063/1.359487CrossRefGoogle Scholar
  105. 105.
    H. Kawarada, H. Ssaki, A. Sato, Scanning-tunneling-microscope observation of the homoepitaxial diamond (001) 2×1 reconstruction observed under atmospheric pressure. Phys. Rev. B 52, 11351–11358 (1995).  https://doi.org/10.1103/PhysRevB.52.11351CrossRefGoogle Scholar
  106. 106.
    Y. Kuang, Y. Wang, N. Lee, A. Badzian, T. Badzian, T.T. Tsong, Surface structure of homoepitaxial diamond (001) films, a scanning tunneling microscopy study. Appl. Phys. Lett. 67, 3721–3723 (1995).  https://doi.org/10.1063/1.115361CrossRefGoogle Scholar
  107. 107.
    C.-L. Cheng, J.-C. Lin, H.-C. Chang, J.-K. Wang, Characterization of CH stretches on diamond C(111) single- and nanocrystal surfaces by infrared absorption spectroscopy. J. Chem. Phys. 105, 8977–8978 (1996).  https://doi.org/10.1063/1.472938CrossRefGoogle Scholar
  108. 108.
    T. Takami, K. Suzuki, I. Kusunoki, I. Sakaguchi, M. Nishitani-Gamo, T. Ando, RHEED and AFM studies of homoepitaxial diamond thin film on C(001) substrate produced by microwave plasma CVD. Diam. Relat. Mater. 8, 701–704 (1999).  https://doi.org/10.1016/S0925-9635(98)00391-4CrossRefGoogle Scholar
  109. 109.
    T. Takami, I. Kusunoki, M. Nishitani-Gamo, T. Ando, Homoepitaxial diamond (001) thin film studied by reflection high-energy electron diffraction, contact atomic force microscopy, and scanning tunneling microscopy. J. Vac. Sci. Technol. B 18, 1198–1202 (2000).  https://doi.org/10.1116/1.591360CrossRefGoogle Scholar
  110. 110.
    A. Heerwagen, M. Strobel, M. Himmelhaus, M. Buck, Chemical vapor deposition of diamond: an in situ study by vibrational spectroscopy. J. Am. Chem. Soc. 123, 6732–6733 (2001).  https://doi.org/10.1021/ja016056qCrossRefGoogle Scholar
  111. 111.
    L.K. Bigelow, M.P. D’Evelyn, Role of surface and interface science in chemical vapor deposition diamond technology. Surf. Sci. 500, 986–1004 (2002).  https://doi.org/10.1016/S0039-6028(01)01545-XCrossRefGoogle Scholar
  112. 112.
    L. Ackermann, W. Kulisch, Investigation of diamond etching and growth by in situ scanning tunneling microscopy. Diam. Relat. Mater. 8, 1256–1260 (1999).  https://doi.org/10.1016/S0925-9635(99)00119-3CrossRefGoogle Scholar
  113. 113.
    B. Voigtländer, M. Kästner, P. Šmilauer, Magic islands in Si/Si(111) homoepitaxy. Phys. Rev. Lett. 81, 858–861 (1998).  https://doi.org/10.1103/PhysRevLett.81.858CrossRefGoogle Scholar
  114. 114.
    H. Yamaguchi, Y. Homma, Imaging of layer by layer growth processes during molecular beam epitaxy of GaAs on (111)A substrates by scanning electron microscopy. Appl. Phys. Lett. 73, 3079–3081 (1998).  https://doi.org/10.1063/1.122678CrossRefGoogle Scholar
  115. 115.
    M. H. Xie, S.M. Seutter, W.K. Zhu, L.X. Zheng, H. Wu, S.Y. Tong, Anisotropic step-flow growth and island growth of GaN(0001) by molecular beam epitaxy. Phys. Rev. Lett. 82, 2749–2752 (1999).  https://doi.org/10.1103/physrevlett.82.2749
  116. 116.
    N. Tokuda, T. Makino, T. Inokuma, S. Yamasaki, Formation of step-free surfaces on diamond (111) mesas by homoepitaxial lateral growth. Jpn. J. Appl. Phys. 51, 090107 (2012).  https://doi.org/10.1143/JJAP.51.090107CrossRefGoogle Scholar
  117. 117.
    N. Tokuda, T. Makino, T. Inokuma, S. Yamasaki, Formation of step-free diamond(111)surfaces by plasma-enhanced CVD. J. Jpn. Assoc. Cryst. Growth 39, 185–189 (2012)Google Scholar
  118. 118.
    F. Jelezko, T. Gaebel, I. Popa, A. Gruber, J. Wrachtrup, Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).  https://doi.org/10.1103/PhysRevLett.92.076401CrossRefGoogle Scholar
  119. 119.
    L. Childress, M.V. Gurudev Dutt, J.M. Taylor, A.S. Zibrov, F. Jelezko, J. Wrachtrup, P.R. Hemmer, M.D. Lukin, Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).  https://doi.org/10.1126/science.1131871
  120. 120.
    M.V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).  https://doi.org/10.1126/science.1139831
  121. 121.
    J.R. Maze, J.M. Taylor, M.D. Lukin, Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys. Rev. B 78, 094303 (2008).  https://doi.org/10.1103/PhysRevB.78.094303CrossRefGoogle Scholar
  122. 122.
    P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Multipartite entanglement among single spins in diamond. Scinece 320, 1326–1329 (2008).  https://doi.org/10.1126/science.1157233CrossRefGoogle Scholar
  123. 123.
    G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).  https://doi.org/10.1038/nmat2420CrossRefGoogle Scholar
  124. 124.
    B.B. Buckley, G.D. Fuchs, L.C. Bassett, D.D. Awschalom, Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).  https://doi.org/10.1126/science.1196436CrossRefGoogle Scholar
  125. 125.
    X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W.J. Munro, Y. Tokura, M.S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, K. Semba, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011).  https://doi.org/10.1038/nature10462CrossRefGoogle Scholar
  126. 126.
    K.C. Lee, M.R. Sprague, B.J. Sussman, J. Nunn, N.K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K.F. Reim, D. England, D. Jaksch, I.A. Walmsley, Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).  https://doi.org/10.1126/science.1211914CrossRefGoogle Scholar
  127. 127.
    J.F. Prings, Activation of boron-dopant atoms in ion-implanted diamonds. Phys. Rev. B 38, 5576–5584 (1988).  https://doi.org/10.1103/PhysRevB.38.5576CrossRefGoogle Scholar
  128. 128.
    C. Uzan-Saguy, R. Kalish, R. Walker, D.N. Jamieson, S. Prawer, Formation of delta-doped, buried conducting layers in diamond, by high-energy, B-ion implantation. Diam. Relat. Mater. 7, 1429–1432 (1998).  https://doi.org/10.1016/S0925-9635(98)00231-3CrossRefGoogle Scholar
  129. 129.
    K. Ueda, M. Kasu, T. Makimoto, High-pressure and high-temperature annealing as an activation method for ion-implanted dopants in diamond. Appl. Phys. Lett. 90, 122102 (2007).  https://doi.org/10.1063/1.2715034CrossRefGoogle Scholar
  130. 130.
    N. Tsubouchi, M. Ogura, Enhancement of dopant activation in B-implanted diamond by high-temperature annealing. Jpn. J. Appl. Phys. 47, 7047–7051 (2008).  https://doi.org/10.1143/JJAP.47.7047CrossRefGoogle Scholar
  131. 131.
    N. Tsubouchi, M. Ogura, N. Mizuochi, H. Watanabe, Electrical properties of a B doped layer in diamond formed by hot B implantation and high-temperature annealing. Diam. Relat. Mater. 18, 128–131 (2009).  https://doi.org/10.1016/j.diamond.2008.09.013CrossRefGoogle Scholar
  132. 132.
    A.K. Ratnikova, M.P. Dukhnovsky, Y.Y. Fedorov, V.E. Zemlyakov, A.B. Muchnikov, A.L. Vikharev, A.M. Gorbachev, D.B. Radishev, A.A. Altukhov, A.V. Mitenkin, Homoepitaxial single crystal diamond grown on natural diamond seeds (type IIa) with boron-implanted layer demonstrating the highest mobility of 1150 cm2/V s at 300 K for ion-implanted diamond. Diam. Relat. Mater. 20, 12343–1245 (2011).  https://doi.org/10.1016/j.diamond.2011.07.007
  133. 133.
    V.S. Bormashov, S.A. Tarelkin, S.G. Buga, M.S. Kuznetsov, S.A. Terentiev, A.N. Semenov, V.D. Blank, Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam. Relat. Mater. 35, 19–23 (2013).  https://doi.org/10.1016/j.diamond.2013.02.011CrossRefGoogle Scholar
  134. 134.
    S. Yamanaka, H. Watanabe, S. Masai, D. Takeuchi, H. Okushi, K. Kajimura, High-quality B-doped homoepitaxial diamond films using trimethylboron. Jpn. J. Appl. Phys. 37, L1129–L1131 (1998).  https://doi.org/10.1143/JJAP.37.L1129CrossRefGoogle Scholar
  135. 135.
    J.-P. Lagrange, A. Deneuville, E. Gheeraert, Activation energy in low compensated homoepitaxial boron-doped diamond films. Diam. Relat. Mater. 7, 1390–1393 (1998).  https://doi.org/10.1016/S0925-9635(98)00225-8CrossRefGoogle Scholar
  136. 136.
    E.A. Ekimov, V.A. Sidrov, E.D. Bauer, N.N. Mel’nki, N.J. Curro, J.D. Thompson, S.M. Stishov, Superconductivity in diamond. Nature 428, 542–545 (2004).  https://doi.org/10.1038/nature02449
  137. 137.
    Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H. Umezawa, H. Kawarada, Superconductivity in diamond thin films well above liquid helium temperature. Appl. Phys. Lett. 85, 2851–2853 (2004).  https://doi.org/10.1063/1.1802389CrossRefGoogle Scholar
  138. 138.
    T. Yokoya, T. Nakamura, T. Matsushita, T. Muro, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada, T. Oguchi, Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature 438, 647–650 (2005).  https://doi.org/10.1038/nature04278CrossRefGoogle Scholar
  139. 139.
    E. Bustarret, Superconducting diamond: an introduction. Phys. Stat. Sol. (a) 205, 997–1008 (2008).  https://doi.org/10.1002/pssa.200777501CrossRefGoogle Scholar
  140. 140.
    T. Klein, P. Achatz, J. Kacmarcik, C. Marcenat, F. Gustafsson, J. Marcus, E. Bustarret, J. Pernot, F. Omnes, B.E. Sernelius, C. Persson, A. Silva, C. Cytermann, Metal-insulator transition and superconductivity in boron-doped diamond. Phys. Rev. B 75, 165313 (2007).  https://doi.org/10.1103/PhysRevB.75.165313CrossRefGoogle Scholar
  141. 141.
    A. Kawano, H. Ishiwata, S. Iriyama, R. Okada, T. Yamaguchi, Y. Takano, H. Kawarada, Superconductor-to-insulator transition in boron-doped diamond films grown using chemical vapor deposition. Phys. Rev. B 82, 085318 (2010).  https://doi.org/10.1103/PhysRevB.82.085318CrossRefGoogle Scholar
  142. 142.
    N. Tokuda, T. Saito, H. Umezawa, H. Okushi, S. Yamasaki, The role of boron atoms in heavily boron-doped semiconducting homoepitaxial diamond growth—study of surface morphology. Diam. Relat. Mater. 16, 409–411 (2007).  https://doi.org/10.1016/j.diamond.2006.08.013CrossRefGoogle Scholar
  143. 143.
    N. Tokuda, H. Umezawa, T. Saito, K. Yamabe, H. Okushi, S. Yamasaki, Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping. Diam. Relat. Mater. 16, 767–770 (2007).  https://doi.org/10.1016/j.diamond.2006.12.024CrossRefGoogle Scholar
  144. 144.
    N. Tokuda, H. Umezawa, K. Yamabe, H. Okushi, S. Yamasaki, Hillock-free heavily boron-doped homoepitaxial diamond films on misoriented (001) substrates. Jpn. J. Appl. Phys. 46, 1469–1470 (2007).  https://doi.org/10.1143/JJAP.46.1469CrossRefGoogle Scholar
  145. 145.
    H. Kato, D. Takeuchi, N. Tokuda, H. Umezawa, H. Okushi, S. Yamasaki, Characterization of specific contact resistance on heavily phosphorus-doped diamond films. Diam. Relat. Mater. 18, 782–785 (2009).  https://doi.org/10.1016/j.diamond.2009.01.033CrossRefGoogle Scholar
  146. 146.
    T. Yatsui, W. Nomura, M. Naruse, M. Ohtsu, Realization of an atomically flat surface of diamond using dressed photon-phonon etching. J. Phys. D 45, 475302 (2012).  https://doi.org/10.1088/0022-3727/45/47/475302CrossRefGoogle Scholar
  147. 147.
    A. Kubota, S. Fukuyama, Y. Ichimori, M. Touge, Surface smoothing of single-crystal diamond (100) substrate by polishing technique. Diam. Relat. Mater. 24, 59–62 (2012).  https://doi.org/10.1016/j.diamond.2011.10.022CrossRefGoogle Scholar
  148. 148.
    Y. Kato, H. Umezawa, S. Shikata, M. Touge, Effect of an ultraflat substrate on the epitaxial growth of chemical-vapor-deposited diamond. Appl. Phys. Express 6, 025506 (2013).  https://doi.org/10.7567/APEX.6.025506CrossRefGoogle Scholar
  149. 149.
    N. Tokuda, H. Umezawa, K. Yamabe, H. Okushi, S. Yamasaki, Growth of atomically step-free surface on diamond {111} mesas. Diam. Relat. Mater. 19, 288–290 (2010).  https://doi.org/10.1016/j.diamond.2009.11.015CrossRefGoogle Scholar
  150. 150.
    N. Tokuda, M. Ogura, T. Matsumoto, S. Yamasaki, T. Inokuma, Influence of substrate misorientation on the surface morphology of homoepitaxial diamond (111) films. Phys. Status Solidi A 213, 2051–2055 (2016).  https://doi.org/10.1002/pssa.201600082CrossRefGoogle Scholar
  151. 151.
    H. Sawada, H. Ichinose, H. Watanabe, D. Takeuchi, H. Okushi, Cross-sectional TEM study of unepitaxial crystallites in a homoepitaxial diamond film. Diam. Relat. Mater. 10, 2030–2034 (2001).  https://doi.org/10.1016/S0925-9635(01)00477-0CrossRefGoogle Scholar
  152. 152.
    T. Tsuno, T. Imai, N. Fujimori, Twinning structure and growth hillock on diamond (001) epitaxial film. Jpn. J. Appl. Phys. 33, 4039–4043 (1994).  https://doi.org/10.1143/JJAP.33.4039CrossRefGoogle Scholar
  153. 153.
    H. Watanabe, D. Takeuchi, S. Yamanaka, H. Okushi, K. Kajimura, T. Sekiguchi, Homoepitaxial diamond film with an atomically flat surface over a large area. Diam. Relat. Mater. 8, 1272–1276 (1999).  https://doi.org/10.1016/S0925-9635(99)00126-0CrossRefGoogle Scholar
  154. 154.
    N. Tokuda, H. Umezawa, S. Ri, M. Ogura, K. Yamabe, H. Okushi, S. Yamasaki, Atomically flat diamond (111) surface formation by homoepitaxial lateral growth. Diam. Relat. Mater. 17, 1051–1054 (2008).  https://doi.org/10.1016/j.diamond.2008.01.089CrossRefGoogle Scholar
  155. 155.
    N. Tokuda, H. Umezawa, H. Kato, M. Ogura, S. Gonda, K. Yamabe, H. Okushi, S. Yamasaki, Nanometer scale height standard using atomically controlled diamond surface. Appl. Phys. Express 2, 055001 (2009).  https://doi.org/10.1143/APEX.2.055001CrossRefGoogle Scholar
  156. 156.
    D. Lee, J.M. Blakely, T.W. Schroeder, J.R. Engstrom, A growth method for creating arrays of atomically flat mesas on silicon. Appl. Phys. Lett. 78, 1349–1351 (2001).  https://doi.org/10.1063/1.1352656CrossRefGoogle Scholar
  157. 157.
    T. Nishida, N. Kobayashi, Step-free surface grown on GaAs (111)B substrate by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 69, 2549–2550 (1996).  https://doi.org/10.1063/1.117735CrossRefGoogle Scholar
  158. 158.
    T. Nishida, N. Kobayashi, Formation of a 100-μm-wide stepfree GaAs (111)B surface obtained by finite area metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 37, L13–L14 (1997).  https://doi.org/10.1143/JJAP.37.L13CrossRefGoogle Scholar
  159. 159.
    J.A. Powell, P.G. Neudeck, A.J. Trunek, G.M. Beheim, L.G. Matus, R.W. Hoffman Jr., L.J. Keys, Growth of step-free surfaces on device-size (0001)SiC mesas. Appl. Phys. Lett. 77, 1449–1451 (2000).  https://doi.org/10.1063/1.1290717CrossRefGoogle Scholar
  160. 160.
    T. Akasaka, Y. Kobayashi, M. Kasu, Step-Free GaN hexagons grown by selective-area metalorganic vapor phase epitaxy. Appl. Phys. Express 2, 091002 (2009).  https://doi.org/10.1143/APEX.2.091002CrossRefGoogle Scholar
  161. 161.
    C.E. Nebel, C.R. Miskys, J.A. Garrido, M. Hermann, O. Ambacher, M. Eickoff, M. Stutzmann, AlN/diamond np-junctions. Diam. Relat. Mater. 12, 1873–1876 (2003).  https://doi.org/10.1016/S0925-9635(03)00313-3CrossRefGoogle Scholar
  162. 162.
    C.R. Miskys, J.A. Garrido, C.E. Nebel, M. Hermann, O. Ambacher, M. Eickhoff, M. Stutzmann, AlN/diamond heterojunction diodes. Appl. Phys. Lett. 82, 290–292 (2003).  https://doi.org/10.1063/1.1532545CrossRefGoogle Scholar
  163. 163.
    Y. Taniyasu, M. Kasu, MOVPE growth of single-crystal hexagonal AlN on cubic diamond. J. Cryst. Growth 311, 2828–2830 (2009).  https://doi.org/10.1016/j.jcrysgro.2009.01.021CrossRefGoogle Scholar
  164. 164.
    K. Hirama, Y. Taniyasu, M. Kasu, Heterostructure growth of a single-crystal hexagonal AlN (0001) layer on cubic diamond (111) surface. J. Appl. Phys. 108, 013528 (2010).  https://doi.org/10.1063/1.3452362CrossRefGoogle Scholar
  165. 165.
    M. Imura, K. Nakajima, M. Liao, Y. Koide, Growth mechanism of c-axis-oriented AlN on (1 1 1) diamond substrates by metal-organic vapor phase epitaxy. J. Cryst. Growth 312, 1325–1328 (2010).  https://doi.org/10.1016/j.jcrysgro.2009.09.020CrossRefGoogle Scholar
  166. 166.
    K. Hirama, Y. Taniyasu, M. Kasu, Hexagonal AlN(0001) heteroepitaxial growth on cubic diamond (001). Jpn. J. Appl. Phys. 49, 04DH01 (2010).  https://doi.org/10.1143/jjap.49.04dh01
  167. 167.
    S. Tanaka, R.S. Kern, R.F. Davis, Initial stage of aluminum nitride film growth on 6H-silicon carbide by plasma-assisted, gas-source molecular beam epitaxy. Appl. Phys. Lett. 66, 37 (1995).  https://doi.org/10.1063/1.114173CrossRefGoogle Scholar
  168. 168.
    J.A. Powell, J.B. Petit, J.H. Edgar, I.G. Jenkins, L.G. Matus, J.W. Yang, P. Pirouz, W.J. Choyke, L. Cleman, M. Yoganathan, Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001) 6H-SiC wafers. Appl. Phys. Lett. 59, 333–335 (1991).  https://doi.org/10.1063/1.105587CrossRefGoogle Scholar
  169. 169.
    T. Ouisse, Electron transport at the SiC/SiO2 interface. Phys. Status Solidi A 162, 339–368 (1997).  https://doi.org/10.1002/1521-396X(199707)162:1%3c339:AID-PSSA339%3e3.0.CO;2-GCrossRefGoogle Scholar
  170. 170.
    N.D. Bassim, M.E. Twigg, C.R. Eddy Jr., J.C. Culbertson, M.A. Mastro, R.L. Henry, R.T. Holm, P.G. Neudeck, A.J. Trunek, J.A. Powell, Lowered dislocation densities in uniform GaN layers grown on step-free (0001) 4H-SiC mesa surfaces. Appl. Phys. Lett. 86, 021902 (2005).  https://doi.org/10.1063/1.1849834CrossRefGoogle Scholar
  171. 171.
    J.D. Caldwell, M.A. Mastro, K.D. Hobart, O.J. Glembocki, C.R. Eddy Jr., N.D. Bassim, R.T. Holm, R.L. Henry, M.E. Twigg, F. Kub, P.G. Neudeck, A.J. Trunek, J.A. Powell, Improved ultraviolet emission from reduced defect gallium nitride homojunctions grown on step-free 4H-SiC mesas. Appl. Phys. Lett. 88, 263509 (2006).  https://doi.org/10.1063/1.2218045CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nanomaterials Research InstituteKanazawa UniversityKanazawaJapan

Personalised recommendations