Imaging Techniques for Probing Nanoparticles in Cells and Skin

  • Christina GrafEmail author
  • Eckart RühlEmail author
Part of the NanoScience and Technology book series (NANO)


Imaging techniques for probing the interactions of nanoparticles with cells and skin are essential for a qualitative and quantitative understanding of uptake and penetration processes. A variety of important visualization techniques is reviewed for providing an overview on established and recently developed techniques. This includes optical microscopy, fluorescence microscopy, electron microscopy, Raman microscopy, optical near-field microscopy, X-ray microscopy, as well as recent and emerging developments in the field of spectromicroscopy.



We are grateful for the contributions of our collaborators contributing to some of the results shown. Specifically, we are indebted to Dr. F. Rancan, Dr. A. Klossek, K. Yamamoto, and Dr. R. Flesch. We thankfully acknowledge the Deutsche Forschungsgemeinschaft for the support of the Priority Program SPP 1313 “Biological Responses to Nanoscale Particles”, project RU420/12-1, and SFB 1112.


  1. 1.
    Stark, W.J.: Nanoparticles in biological systems. Angew. Chem. Int. Ed. 50(6), 1242–1258 (2011)Google Scholar
  2. 2.
    Shang, L., Nienhaus, G.U.: Small fluorescent nanoparticles at the nano-bio interface. Mater. Today 16(3), 58–66 (2013)Google Scholar
  3. 3.
    Treuel, L., Jiang, X.E., Nienhaus, G.U.: New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface 10(82), 20120939 (2013)Google Scholar
  4. 4.
    Pelaz, B., et al.: Interfacing Engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small 9(9–10), 1573–1584 (2013)Google Scholar
  5. 5.
    Geiser, M., Kreyling, W.G.: Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7(2), 17 (2010)Google Scholar
  6. 6.
    Shang, L., et al.: Nanoparticle interactions with live cells: quantitative fluorescence microscopy of nanoparticle size effects. Beilstein J. Nanotechnol. 5, 2388–2397 (2014)Google Scholar
  7. 7.
    Lundqvist, M., et al.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Nat. Acad. Sci. 105(38), 14265–14270 (2008)Google Scholar
  8. 8.
    Treuel, L., Nienhaus, G.U.: Toward a molecular understanding of nanoparticle–protein interactions. Biophys. Rev. 4(2), 137–147 (2012)Google Scholar
  9. 9.
    Monopoli, M.P., et al.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012)Google Scholar
  10. 10.
    Xiao Wen, L., et al.: Penetration of Nanoparticles into Human Skin. Curr. Pharm. Des. 19(35), 6353–6366 (2013)Google Scholar
  11. 11.
    Döge, N., et al.: Identification of polystyrene nanoparticle penetration across intact skin barrier as rare event at sites of focal particle aggregations. J. Biophotonics 11(4), e201700169 (2018)Google Scholar
  12. 12.
    Graf, C., et al.: Penetration of spherical and rod-like gold nanoparticles into intact and barrier-disrupted human skin. In: SPIE BiOS, vol. 9338, pp. 93381L–933811. SPIE 9338 (2015)Google Scholar
  13. 13.
    Graf, C., et al.: Shape-dependent dissolution and cellular uptake of silver nanoparticles. Langmuir 34(4), 1506–1519 (2018)Google Scholar
  14. 14.
    Wang, H., et al.: Optical sizing of immunolabel clusters through multispectral plasmon coupling microscopy. Nano Lett. 11(2), 498–504 (2011)Google Scholar
  15. 15.
    Blank, H., et al.: Application of low-energy scanning transmission electron microscopy for the study of Pt-nanoparticle uptake in human colon carcinoma cells. Nanotoxicology 8(4), 433–446 (2014)Google Scholar
  16. 16.
    Peckys, D.B., et al.: Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci. Rep. 3, 2626 (2013)Google Scholar
  17. 17.
    Peckys, D.B., de Jonge, N.: Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal. 20(2), 346–365 (2014)Google Scholar
  18. 18.
    Yamamoto, K., et al.: Selective probing of the penetration of dexamethasone into human skin by soft X-ray spectromicroscopy. Anal. Chem. 87(12), 6173–6179 (2015)Google Scholar
  19. 19.
    Yamamoto, K., et al.: Core-multishell nanocarriers: transport and release of dexamethasone probed by soft X-ray spectromicroscopy. J. Control. Release 242, 64–70 (2016)Google Scholar
  20. 20.
    Yamamoto, K., et al.: Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy. Eur. J. Pharm. Biopharm. 118(SI), 30–37 (2017)Google Scholar
  21. 21.
    Meinke, M.C., et al.: Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations. Exp. Dermatol. 24(3), 194–197 (2015)Google Scholar
  22. 22.
    Honeywell-Nguyen, P.L., Gooris, G.S., Bouwstra, J.A.: Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J. Invest. Dermatol. 123(5), 902–910 (2004)Google Scholar
  23. 23.
    Witting, M., et al.: Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol. Pharm. 12(5), 1391–1401 (2015)Google Scholar
  24. 24.
    Lewin, M., et al.: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18(4), 410–414 (2000)Google Scholar
  25. 25.
    Selvi, B.R., et al.: Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 8(10), 3182–3188 (2008)Google Scholar
  26. 26.
    Song, Z., et al.: Background free imaging of upconversion nanoparticle distribution in human skin. J. Biomed. Opt. 18(6), 061215 (2013)Google Scholar
  27. 27.
    Huang, Y., Fenech, M., Shi, Q.H.: Micronucleus formation detected by live-cell imaging. Mutagenesis 26(1), 133–138 (2011)Google Scholar
  28. 28.
    Seynhaeve, A.L.B., ten Hagen, T.L.M.: Using in vitro live-cell imaging to explore chemotherapeutics delivered by lipid-based nanoparticles. J. Vis. Exp. 129, e55405 (2017)Google Scholar
  29. 29.
    Wildt, B.E., et al.: Intracellular accumulation and dissolution of silver nanoparticles in L-929 fibroblast cells using live cell time-lapse microscopy. Nanotoxicology 10(6), 710–719 (2016)Google Scholar
  30. 30.
    Boreham, A., et al.: Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. Eur. J. Pharm. Biopharm. 110, 31–38 (2017)Google Scholar
  31. 31.
    Volz, P., et al.: Application of single molecule fluorescence microscopy to characterize the penetration of a large amphiphilic molecule in the stratum corneum of human skin. Int. J. Mol. Sci. 16(4), 6960–6977 (2015)Google Scholar
  32. 32.
    van der Zwaag, D., et al.: Super resolution imaging of nanoparticles cellular uptake and trafficking. ACS Appl. Mater. Inter. 8(10), 6391–6399 (2016)Google Scholar
  33. 33.
    Peuschel, H., et al.: Quantification of internalized silica nanoparticles via STED microscopy. Biomed. Res. Int. 2015, 961208 (2015)Google Scholar
  34. 34.
    Wang, S.H., et al.: Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis. J. Biophotonics 9(7), 738–749 (2016)Google Scholar
  35. 35.
    Deka, G., et al.: Nonlinear plasmonic imaging techniques and their biological applications. Nanophotonics 6(1), 31–49 (2017)Google Scholar
  36. 36.
    Alexiev, U., et al.: Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur. J. Pharm. Biopharm. 116(SI), 111–124 (2017)Google Scholar
  37. 37.
    Vogt, A., et al.: Nanocarriers for drug delivery into and through the skin—do existing technologies match clinical challenges? J. Control. Release 242, 3–15 (2016)Google Scholar
  38. 38.
    Ostrowski, A., et al.: Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J. Nanotechnol. 6, 263–280 (2015)Google Scholar
  39. 39.
    Baeza, A., et al.: Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal? J. Mater. Chem. B 5(15), 2714–2725 (2017)Google Scholar
  40. 40.
    Chen, D.D., Monteiro-Riviere, N.A., Zhang, L.S.W.: Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(2), e1419 (2017)Google Scholar
  41. 41.
    Lin, L.L., et al.: Non-invasive nanoparticle imaging technologies for cosmetic and skin care products. Cosmetics 2, 196–210 (2015)Google Scholar
  42. 42.
    Potocnik, J.: Commission recommendation of 18 October 2011 on the defnition of nanomaterals. Official J. Europ. Union L275/38 (2011)Google Scholar
  43. 43.
    Panyam, J., Labhasetwar, V.: Dynamics of endocytosis and exocytosis of poly(D, L-Lactide-co-Glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20(2), 212–220 (2003)Google Scholar
  44. 44.
    Jiang, X., et al.: Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4(11), 6787–6797 (2010)Google Scholar
  45. 45.
    Clift, M.J.D., et al.: The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 232(3), 418–427 (2008)Google Scholar
  46. 46.
    dos Santos, T., et al.: Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7(23), 3341–3349 (2011)Google Scholar
  47. 47.
    Byrne, G.D., et al.: Live imaging of cellular internalization of single colloidal particle by combined label-free and fluorescence total internal reflection microscopy. Mol. Pharm. 12(11), 3862–3870 (2015)Google Scholar
  48. 48.
    Ann, F.H., et al.: Nanotechnology: toxicologic pathology. Toxicol. Pathol. 41(2), 395–409 (2013)Google Scholar
  49. 49.
    Song, C.X., et al.: Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 43(2), 197–212 (1997)Google Scholar
  50. 50.
    Haase, M., Schaefer, H.: Upconverting Nanoparticles. Ang. Chem. Int. Ed. 50(26), 5808–5829 (2011)Google Scholar
  51. 51.
    Song, C.X., et al.: Bifunctional cationic solid lipid nanoparticles of β-NaYF4: Yb, Er upconversion nanoparticles coated with a lipid for bioimaging and gene delivery. RSC Adv. 7(43), 26633–26639 (2017)Google Scholar
  52. 52.
    Kuo, T.-R., et al.: Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials 30(16), 3002–3008 (2009)Google Scholar
  53. 53.
    Prow, T.W., et al.: Quantum dot penetration into viable human skin. Nanotoxicology 6(2), 173–185 (2012)Google Scholar
  54. 54.
    Labouta, H.I., et al.: Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm. Res. 28(11), 2931–2944 (2011)Google Scholar
  55. 55.
    Prow, T., et al.: Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Mol. Vis. 12(67–69), 616–625 (2006)Google Scholar
  56. 56.
    Prow, T.W., et al.: Nanoparticles and microparticles for skin drug delivery. Adv. Drug. Del. Rev. 63(6), 470–491 (2011)Google Scholar
  57. 57.
    de Campos, A.M., et al.: Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm. Res. 21(5), 803–810 (2004)Google Scholar
  58. 58.
    Prow, T.W., et al.: Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 4(4), 340–349 (2008)Google Scholar
  59. 59.
    Kang, J.H., Jang, W.Y., Ko, Y.T.: The effect of surface charges on the cellular uptake of liposomes investigated by live cell imaging. Pharm. Res. 34(4), 704–717 (2017)Google Scholar
  60. 60.
    Oreopoulos, J., Berman, R., Browne, M.: Spinning-disk confocal microscopy: present technology and future trends. In: Waters, Wittmann, T. (eds.) Quantitative Imaging in Cell Biology, pp. 153–175. Elsevier Academic Press Inc, San Diego (2014)Google Scholar
  61. 61.
    Baroli, B., et al.: Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol. 127(7), 1701–1712 (2007)Google Scholar
  62. 62.
    Cross, S.E., et al.: Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol. 20(3), 148–154 (2007)Google Scholar
  63. 63.
    Gratieri, T., et al.: Penetration of quantum dot particles through human skin. J. Biomed. Nanotechnol. 6(5), 586–595 (2010)Google Scholar
  64. 64.
    Alvarez-Roman, R., et al.: Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 99(1), 53–62 (2004)Google Scholar
  65. 65.
    Mortensen, L.J., et al.: In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 8(9), 2779–2787 (2008)Google Scholar
  66. 66.
    Ostrowski, A., et al.: Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine 10(7), 1571–1581 (2014)Google Scholar
  67. 67.
    Rouse, J.G., et al.: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 7(1), 155–160 (2007)Google Scholar
  68. 68.
    Gonzalez, S., et al.: Changing paradigms in dermatology: Confocal microscopy in clinical and surgical dermatology. Clin. Dermatol. 21(5), 359–369 (2003)Google Scholar
  69. 69.
    Shahriari, N., et al.: In vivo reflectance confocal microscopy image interpretation for the dermatopathologist. J. Cutan. Pathol. 45(3), 187–197 (2018)Google Scholar
  70. 70.
    Summers, H.D., et al.: Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6(3), 170–174 (2011)Google Scholar
  71. 71.
    Vranic, S., et al.: Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part. Fibre Toxicol. 10, 2 (2013)Google Scholar
  72. 72.
    Gao, N.Y., et al.: Shape-dependent two-photon photoluminescence of single gold nanoparticles. J. Phys. Chem. B 118(25), 13904–13911 (2014)Google Scholar
  73. 73.
    Richter, T., et al.: Dead but highly dynamic—the stratum corneum is divided into three hydration zones. Skin Pharmacol. Physiol. 17(5), 246–257 (2004)Google Scholar
  74. 74.
    Rane, T.D., Armani, A.M.: Two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids. PLoS ONE 11(12), e0167548 (2016)Google Scholar
  75. 75.
    Zhu, Y.J., et al.: Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy. J. Biomed. Opt. 20(5), 051006 (2015)Google Scholar
  76. 76.
    Li, K., Schneider, M.: Quantitative evaluation and visualization of size effect on cellular uptake of gold nanoparticles by multiphoton imaging-UV/Vis spectroscopic analysis. J. Biomed. Opt. 19(10), 101505 (2014)Google Scholar
  77. 77.
    Graf, B.W., et al.: In vivo imaging of immune cell dynamics in skin in response to zinc-oxide nanoparticle exposure. Biomed. Opt. Exp. 4(10), 1817–1828 (2013)Google Scholar
  78. 78.
    Basuki, J.S., et al.: Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 7(11), 10175–10189 (2013)Google Scholar
  79. 79.
    Boreham, A., et al.: Exploiting fluorescence lifetime plasticity in FLIM: target molecule localization in cells and tissues. ACS Med. Chem. Lett. 2(10), 724–728 (2011)Google Scholar
  80. 80.
    Roberts, M.S., et al.: Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur. J. Pharm. Biopharm. 77(3), 469–488 (2011)Google Scholar
  81. 81.
    Hanson, K.M., et al.: Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys. J. 83(3), 1682–1690 (2002)Google Scholar
  82. 82.
    Hell, S.W.: Nanoscopy with focused light (Nobel Lecture). Angew. Chem. Int. Ed. 54(28), 8054–8066 (2015)Google Scholar
  83. 83.
    Kamiyama, D., Huang, B.: Development in the STORM. Dev. Cell 23(6), 1103–1110 (2012)Google Scholar
  84. 84.
    Betzig, E.: Single molecules, cells, and super-resolution optics (Nobel Lecture). Ang. Chem. Int. Ed. 54(28), 8034–8053 (2015)Google Scholar
  85. 85.
    Gustafsson, M.G.L.: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005)Google Scholar
  86. 86.
    Schübbe, S., et al.: Size-dependent localization and quantitative evaluation of the intracellular migration of silica nanoparticles in Caco-2 cells. Chem. Mater. 24(5), 914–923 (2012)Google Scholar
  87. 87.
    Nedosekin, D.A., et al.: Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells. Drug Metab. Rev. 47(3), 346–355 (2015)Google Scholar
  88. 88.
    Vermeulen, P., Cognet, L., Lounis, B.: Photothermal microscopy: optical detection of small absorbers in scattering environments. J. Microsc. 254(3), 115–121 (2014)Google Scholar
  89. 89.
    Galanzha, E., Zharov, V.P.: Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo. Cancers 5(4), 1691–1738 (2013)Google Scholar
  90. 90.
    Nieves, D.J., et al.: Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. R. Soc. Open Sci. 2(6), 140454 (2015)Google Scholar
  91. 91.
    Erni, R., et al.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009)Google Scholar
  92. 92.
    Jane, A.F., et al.: Ultrastructural analysis in preclinical safety evaluation. Toxicol. Pathol. 40(2), 391–402 (2012)Google Scholar
  93. 93.
    Hoenger, A., McIntosh, J.R.: Probing the macromolecular organization of cells by electron tomography. Curr. Opin. Cell Biol. 21(1), 89–96 (2009)Google Scholar
  94. 94.
    Leis, A., et al.: Visualizing cells at the nanoscale. Trends Biochem. Sci. 34(2), 60–70 (2009)Google Scholar
  95. 95.
    Kourkoutis, L.F., Plitzko, J.M., Baumeister, W.: Electron microscopy of biological materials at the nanometer scale. Annu. Rev. Mater. Res. 42(1), 33–58 (2012)Google Scholar
  96. 96.
    Pierson, J., et al.: Toward visualization of nanomachines in their native cellular environment. Histochem. Cell Biol. 132(3), 253–262 (2009)Google Scholar
  97. 97.
    Medalia, O., et al.: Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298(5596), 1209–1213 (2002)Google Scholar
  98. 98.
    Fujimoto, K.: Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell. Sci. 108(11), 3443–3449 (1995)Google Scholar
  99. 99.
    Bushby, A.J., et al.: Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat. Protoc. 6(6), 845–858 (2011)Google Scholar
  100. 100.
    Gontier, E., et al.: Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology 2(4), 218–231 (2008)Google Scholar
  101. 101.
    Hubbs, A.F., et al.: Nanotoxicology-a pathologist’s perspective. Toxicol. Pathol. 39(2), 301–324 (2011)Google Scholar
  102. 102.
    Adachi, K., et al.: In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicology 4(3), 296–306 (2010)Google Scholar
  103. 103.
    Marquis, B.J., et al.: Analytical methods to assess nanoparticle toxicity. Analyst 134(3), 425–439 (2009)Google Scholar
  104. 104.
    Kempen, P.J., et al.: A scanning transmission electron microscopy approach to analyzing large volumes of tissue to detect nanoparticles. Microsc. Microanal. 19(5), 1290–1297 (2013)Google Scholar
  105. 105.
    Droste, M.S., et al.: Noninvasive measurement of cell volume changes by negative staining. J. Biomed. Opt. 10(6), 064017 (2005)Google Scholar
  106. 106.
    Richter, T., et al.: Pros and cons: cryo-electron microscopic evaluation of block faces versus cryo-sections from frozen-hydrated skin specimens prepared by different techniques. J. Microsc. Oxford 225(2), 201–207 (2007)Google Scholar
  107. 107.
    Echlin, P.: Low-Temperature Microscopy and Analysis. Springer, Berlin (1992)Google Scholar
  108. 108.
    Lucas, M.S., Günthert, M., Gasser, P., Lucas, F., Wepf, R.: Bridging microscopes: 3D correlative light and scanning electron microscopy of complex biological structures. In: Müller-Reichert, T., Verkade, P. (eds.) Correlative Light and Electron Microscopy, pp. 325–356. Academic Press, Cambridge (2012)Google Scholar
  109. 109.
    McDonald, K.L.: A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J. Microsc. 235(3), 273–281 (2009)Google Scholar
  110. 110.
    Webster, P., Schwarz, H., Griffiths, G.: Preparation of cells and tissues for immuno EM, Chap. 3. In: Methods Cell Biology, pp. 45–58. Academic Press, Amsterdam (2008)Google Scholar
  111. 111.
    Norlén, L.: Nanostructure of the stratum corneum extracellular lipid matrix as observed by cryo-electron microscopy of vitreous skin sections. Int. J. Cosmet. Sci. 29(5), 335–352 (2007)Google Scholar
  112. 112.
    Asahina, S., Togashi, T., Terasaki, O., Takami, S., Adschiri, T., Shibata, M., Erdman, N.: High-resolution low-voltage scanning electron microscope study of nanostructured materials. Microsc. Anal. 26, S12–S14 (2012)Google Scholar
  113. 113.
    Callaway, E.: The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525(7568), 172–174 (2015)Google Scholar
  114. 114.
    Engel, A., Dubochet, J., Kellenberger, E.: Some progress in the use of a scanning transmission electron microscope for the observation of biomacromolecules. J. Ultrastruct. Res. 57(3), 322–330 (1976)Google Scholar
  115. 115.
    Ohtsuki, M.: Observation of unstained biological macromolecules with STEM. Ultramicroscopy 5(3), 317–323 (1980)Google Scholar
  116. 116.
    Colliex, C., Mory, C.: Scanning transmission electron microscopy of biological structures. Biol. Cell 80(2–3), 175–180 (1994)Google Scholar
  117. 117.
    Porter, A.E., et al.: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2(11), 713–717 (2007)Google Scholar
  118. 118.
    Uchida, M., et al.: Intracellular distribution of macrophage targeting ferritin-iron oxide nanocomposite. Adv. Mater. 21(4), 458–462 (2009)Google Scholar
  119. 119.
    Donald, A.M.: The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat. Mater. 2, 511–516 (2003)Google Scholar
  120. 120.
    de Jonge, N., Ross, F.M.: Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011)Google Scholar
  121. 121.
    Stokes, D.J.: Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). Wiley, Chichester, West-Sussex (2008)Google Scholar
  122. 122.
    Kirk, S.E., Skepper, J.N., Donald, A.M.: Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc. 233(2), 205–224 (2009)Google Scholar
  123. 123.
    Bogner, A., et al.: Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104(3), 290–301 (2005)Google Scholar
  124. 124.
    Williamson, M.J., et al.: Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2(8), 532–536 (2003)Google Scholar
  125. 125.
    de Jonge, N., et al.: Scanning transmission electron microscopy of biological specimens in water. Microsc. Microanal. 13(S02), 242–243 (2007)Google Scholar
  126. 126.
    de Jonge, N., et al.: Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009)Google Scholar
  127. 127.
    Peckys, D.B., et al.: Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS ONE 4(12), e8214 (2009)Google Scholar
  128. 128.
    Le Trequesser, Q., et al.: Single cell in situ detection and quantification of metal oxide nanoparticles using multimodal correlative microscopy. Anal. Chem. 86(15), 7311–7319 (2014)Google Scholar
  129. 129.
    Peckys, D.B., Bandmann, V., de Jonge, N.: Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid. In: Müller-Reichert, T., Verkade, P. (eds.) Methods in Cell Biology, vol. 124, pp. 305–322. Academic Press, Cambridge (2014)Google Scholar
  130. 130.
    Liu, M.M., et al.: Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat. Commun. 8, 15646 (2017)Google Scholar
  131. 131.
    Jahn, K.A., et al.: Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43(5), 565–582 (2012)Google Scholar
  132. 132.
    Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. Photon. 1(11), 641–648 (2007)Google Scholar
  133. 133.
    Krafft, C., et al.: Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Ang. Chem. Int. Ed. 56, 4392–4430 (2017)Google Scholar
  134. 134.
    Zhang, G.J., et al.: Imaging the prodrug-to-drug transformation of a 5-fluorouracil derivative in skin by confocal Raman microscopy. J. Invest. Dermatol. 127(5), 1205–1209 (2007)Google Scholar
  135. 135.
    Freudiger, C.W., et al.: Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science 322(5909), 1857–1861 (2008)Google Scholar
  136. 136.
    Klossek, A., et al.: Studies for improved understanding of lipid distributions in human skin by combining stimulated and spontaneous Raman microscopy. Eur. J. Pharm. Biopharm. 116(SI), 76–84 (2017)Google Scholar
  137. 137.
    Belsey, N.A., et al.: Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies. J. Control. Release, 174, 37–42 (2014)Google Scholar
  138. 138.
    Saar, B.G., et al.: Imaging drug delivery to skin with stimulated Raman scattering microscopy. Mol. Pharm. 8(3), 969–975 (2011)Google Scholar
  139. 139.
    Giulbudagian, M., et al.: Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J. Control. Release 243, 323–332 (2016)Google Scholar
  140. 140.
    Zhang, C., Zhang, D.L., Cheng, J.X.: Coherent Raman scattering microscopy in biology and medicine. In: Yarmush, M.L. (ed.) Annual Review of Biomedical Engineering, vol. 17, pp. 415–445 (2015)Google Scholar
  141. 141.
    Vo-Dinh, T., et al.: SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip. Rev.-Nanomedicine Nanobiotechnology 7, 17–33 (2015)Google Scholar
  142. 142.
    Li, Q., et al.: AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv. 6(16), 12893–12912 (2016)Google Scholar
  143. 143.
    Berweger, S., et al.: Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J. Am. Chem. Soc. 135(49), 18292–18295 (2013)Google Scholar
  144. 144.
    Hermann, P., et al.: Enhancing the sensitivity of nano-FTIR spectroscopy. Opt. Express 25(14), 16574–16588 (2017)Google Scholar
  145. 145.
    Verma, P.: Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117(9), 6447–6466 (2017)Google Scholar
  146. 146.
    Dazzi, A., Prater, C.B.: AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017)Google Scholar
  147. 147.
    Lawrence, J.R., et al.: Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials. J. Microsc. 261, 130–147 (2016)Google Scholar
  148. 148.
    Karunakaran, C., et al.: Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research. PLoS ONE 10, e0122959 (2015)Google Scholar
  149. 149.
    Stöhr, J.: NEXAFS spectroscopy. In: Gomer, R. (ed.) Springer Series in Surface Science, vol. 25. Springer, Berlin (1992)Google Scholar
  150. 150.
    Schulz, R., et al.: Data-based modeling of drug penetration relates human skin barrier function to the interplay of diffusivity and free-energy profiles. Proc. Natl. Acad. Sci. U.S.A. 114(14), 3631–3636 (2017)Google Scholar
  151. 151.
    Schneider, G., et al.: Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7(12), 985–987 (2010)Google Scholar
  152. 152.
    Graf, C., et al.: Qualitative detection of single submicron and nanoparticles in human skin by scanning transmission X-ray microscopy. J. Biomed. Opt. 14(2), 021015 (2009)Google Scholar
  153. 153.
    Bos, J.D., Meinardi, M.: The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9(3), 165–169 (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiotechnologyUniversity of Applied Sciences DarmstadtDarmstadtGermany
  2. 2.Physical ChemistryInstitute of Chemistry and Biochemistry, Free University of BerlinBerlinGermany

Personalised recommendations