Advertisement

Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies

  • Wye-Khay Fong
  • Thomas L. Moore
  • Sandor Balog
  • Dimitri Vanhecke
  • Laura Rodriguez-Lorenzo
  • Barbara Rothen-Rutishauser
  • Marco Lattuada
  • Alke Petri-FinkEmail author
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The transformation of nanoparticles (NPs) in physiological milieu is a dynamic phenomenon that is the subject of intense investigation. When introduced into the body, NPs can undergo a variety of changes, such as, protein adsorption, dissolution, agglomeration/aggregation, structural deformities and redox reactions. It is these changes that subsequently determine the uptake, bioavailability, translocation and fate of NPs, which ultimately determine their therapeutic efficiency, diagnostic efficacy or toxicity. This chapter will consider the colloidal interactions at the interface of NPs with the contents of biological milieu, the practical and theoretical considerations required to modify analytical and imaging techniques to detect and, if possible, quantify NPs in this complex environment, and the requirement for a highly interdisciplinary approach to understand the behaviour at the bio-nano interface.

Keywords

Biological fluids Cell culture media Aggregation Colloidal chemistry Nanoparticle fate Dosimetry Light scattering Spectroscopy Separation methods Light microscopy Electron microscopy Synchrotron radiation Microfluidics 

Abbreviations

AFFF

Asymmetric flow field-flow fractionation

AFM

Atomic force microscopy

AUC

Analytical ultracentrifuge

BSA

Bovine serum albumin

BSE

Backscattered electrons

CD

Circular dichroism

CCM

Cell culture media

DC

Disc centrifuge analysis

DDLS

Depolarized dynamic light scattering

DLS

Dynamic light scattering

DLS-zeta potential

Laser-Doppler velocimetry

EELS

Electron energy loss spectroscopy

ESEM

Environmental scanning electron microscope

EXAFS

Extended X-ray absorption fine structure

FBS

Foetal bovine serum

FCS

Fluorescence correlation spectroscopy

FRET

Förster resonance energy transfer

LIT

Lock in thermography LM: light microscopy

NPs

Nanoparticles

SANS

Small-angle neutron scattering

SAXS

Small-angle X-ray scattering

SE

Secondary electrons

SERS

Surface-enhanced Raman spectroscopy

SLS

Static light scattering

SPIONs

Superparamagnetic iron nanoparticles

sSAXS

Synchrotron small angle X-ray scattering

STEM

Scanning transmission electron microscope

STXM

Scanning transmission X-ray microscopy

TDA

Taylor dispersion analysis

TEM

Transmission electron microscopy

TiO2

Titanium dioxide

TRPS

Tuneable resistive pulse sensing

UV-Vis

Optical extinction spectroscopy in the UV-Visible range

XAS

X-ray absorption spectroscopy

XANES

X-ray absorption near edge structure

XRD

X-ray diffraction

XRM

X-ray microscopy

ZnO

Zinc oxide

Notes

Acknowledgements

This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research Bio-Inspired Materials (WKF through the Research Program for Women in Science). The authors acknowledge financial support of the Swiss National Science Foundation (ML through grant number PP00P2_159258, BRR through grant number 310030_159847/1), the Adolphe Merkle Foundation, and the University of Fribourg. LRL acknowledges financial support from the Marie Curie COFUND Action (600375. NanoTRAINforGrowth).

References

  1. 1.
    Kim, B.Y.S., Rutka, J.T., Chan, W.C.W.: Nanomedicine. New Engl. J. Med. 363(25), 2434–2443 (2010)CrossRefGoogle Scholar
  2. 2.
    Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J., Corrie, S.R.: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016)CrossRefGoogle Scholar
  3. 3.
    Moore, T.L., Rodriguez-Lorenzo, L., Hirsch, V., Balog, S., Urban, D., Jud, C., Rothen-Rutishauser, B., Lattuada, M., Petri-Fink, A.: Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44(17), 6287–6305 (2015)CrossRefGoogle Scholar
  4. 4.
    Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology, 11th ed, p XXXV, 1116 p. Elsevier/Saunders, Philadelphia [etc.] (2006)Google Scholar
  5. 5.
    Yao, T., Asayama, Y.: Animal-cell culture media: history, characteristics, and current issues. Reprod. Med. Biol. 16(2), 99–117 (2017)CrossRefGoogle Scholar
  6. 6.
    Carrel, A.: On the permanent life of tissues outside of the organism. J. Exp. Med. 15(5), 516–528 (1912)CrossRefGoogle Scholar
  7. 7.
    Ebeling, A.H.: A ten year old strain of fibroblasts. J. Exp. Med. 35(6), 755–759 (1922)CrossRefGoogle Scholar
  8. 8.
    Fischer, A., Astrup, T., Ehrensvard, G., Oehlenschlager, V.: Growth of animal tissue cells in artificial media. Exp. Biol. Med. 67(1), 40–46 (1948)CrossRefGoogle Scholar
  9. 9.
    Zheng, X., Baker, H., Hancock, W.S., Fawaz, F., McCaman, M., Pungor, E.: Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol. Progr. 22(5), 1294–1300 (2006)Google Scholar
  10. 10.
    Eagle, H., Buffer combinations for mammalian cell culture. 174, 500–503 (1971)Google Scholar
  11. 11.
    Stopford, W., Turner, J., Cappellini, D., Brock, T.: Bioaccessibility testing of cobalt compounds. J. Environ. Monit. 5(4), 675–680 (2003)CrossRefGoogle Scholar
  12. 12.
    Pagana, K.D., Pagana, T.J.: Mosby’s Manual of Diagnostic and Laboratory Tests, 5th ed, pp. 1180. Elsevier Mosby, St. Louis, Missouri (2014)Google Scholar
  13. 13.
    Anderson, N.L., Anderson, N.G.: The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1(11), 845–867 (2002)CrossRefGoogle Scholar
  14. 14.
    Hellstrand, E., Lynch, I., Andersson, A., Drakenberg, T., Dahlbäck, B., Dawson, K.A., Linse, S., Cedervall, T.: Complete high-density lipoproteins in nanoparticle corona. FEBS J. 276(12), 3372–3381 (2009)CrossRefGoogle Scholar
  15. 15.
    Kellum, J.A.: Determinants of blood pH in health and disease. Crit. Care 4(1), 6 (2000)CrossRefGoogle Scholar
  16. 16.
    Caracciolo, G., Farokhzad, O.C., Mahmoudi, M.: Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 35(3), 257–264Google Scholar
  17. 17.
    Choi, M.-R., Bardhan, R., Stanton-Maxey, K.J., Badve, S., Nakshatri, H., Stantz, K.M., Cao, N., Halas, N.J., Clare, S.E.: Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnol. 3(1–6), 47–54 (2012)CrossRefGoogle Scholar
  18. 18.
    Anselmo, A.C., Kumar, S., Gupta, V., Pearce, A.M., Ragusa, A., Muzykantov, V., Mitragotri, S.: Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: synergy between physical, chemical and biological approaches. Biomaterials 68, 1–8 (2015)CrossRefGoogle Scholar
  19. 19.
    Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J., Bruinink, A.: The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168(2), 121–131 (2007)CrossRefGoogle Scholar
  20. 20.
    Teeguarden, J.G., Hinderliter, P.M., Orr, G., Thrall, B.D., Pounds, J.G.: Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95(2), 300–312 (2007)CrossRefGoogle Scholar
  21. 21.
    Albanese, A., Chan, W.C.W.: Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5(7), 5478–5489 (2011)CrossRefGoogle Scholar
  22. 22.
    Singh, A.K.: Physicochemical, electronic, and mechanical properties of nanoparticles. Engineered Nanoparticles, pp. 77–123. Academic Press, Boston (2016)Google Scholar
  23. 23.
    Zhang, Z., Wu, Y.: Investigation of the NaBH4-induced aggregation of Au nanoparticles. Langmuir 26(12), 9214–9223 (2010)CrossRefGoogle Scholar
  24. 24.
    Peretyazhko, T.S., Zhang, Q., Colvin, V.L.: Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ. Sci. Technol. 48(20), 11954–11961 (2014)CrossRefADSGoogle Scholar
  25. 25.
    Larson, T.A., Joshi, P.P., Sokolov, K.: Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 6(10), 9182–9190 (2012)CrossRefGoogle Scholar
  26. 26.
    Urban, D.A., Rodriguez-Lorenzo, L., Balog, S., Kinnear, C., Rothen-Rutishauser, B., Petri-Fink, A.: Plasmonic nanoparticles and their characterization in physiological fluids. Colloid Surf. B 137, 39–49 (2016)CrossRefGoogle Scholar
  27. 27.
    Kreyling, W.G., Abdelmonem, A.M., Ali, Z., Alves, F., Geiser, M., Haberl, N., Hartmann, R., Hirn, S., de Aberasturi, D.J., Kantner, K., Khadem-Saba, G., Montenegro, J.-M., Rejman, J., Rojo, T., de Larramendi, I.R., Ufartes, R., Wenk, A., Parak, W.J.: In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 10, 619 (2015)CrossRefADSGoogle Scholar
  28. 28.
    Lynch, I., Langevin, D., Dawson, K.A.: Lessons for bionanointeractions from colloidal science. In: Starov, V.M. (ed.) Nanoscience: Colloidal and Interfacial Aspects, p. 369. Taylor & Francis, London (2010)Google Scholar
  29. 29.
    Cedervall, T., Lynch, I., Lindman, S., Berggård, T., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S.: Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 104(7), 2050 (2007)CrossRefADSGoogle Scholar
  30. 30.
    Walkey, C.D., Olsen, J.B., Song, F., Liu, R., Guo, H., Olsen, D.W.H., Cohen, Y., Emili, A., Chan, W.C.W.: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8(3), 2439–2455 (2014)CrossRefGoogle Scholar
  31. 31.
    Liu, R., Jiang, W., Walkey, C.D., Chan, W.C.W., Cohen, Y.: Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale 7(21), 9664–9675 (2015)CrossRefADSGoogle Scholar
  32. 32.
    Ke, P.C., Lin, S., Parak, W.J., Davis, T.P., Caruso, F.: A decade of the protein corona. ACS Nano 11(12), 11773–11776 (2017)CrossRefGoogle Scholar
  33. 33.
    Treuel, L., Docter, D., Maskos, M., Stauber, R.H.: Protein corona—from molecular adsorption to physiological complexity. Beilstein J. Nanotech. 6, 857–873 (2015)CrossRefGoogle Scholar
  34. 34.
    Medintz, I.L., Konnert, J.H., Clapp, A.R., Stanish, I., Twigg, M.E., Mattoussi, H., Mauro, J.M., Deschamps, J.R.: A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. U. S. A. 101(26), 9612–9617 (2004)CrossRefADSGoogle Scholar
  35. 35.
    Schein, C.H.: Solubility as a function of protein structure and solvent components. Bio/Technology 8, 308 (1990)Google Scholar
  36. 36.
    Monopoli, M.P., Åberg, C., Salvati, A., Dawson, K.A.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779 (2012)CrossRefADSGoogle Scholar
  37. 37.
    Docter, D., Westmeier, D., Markiewicz, M., Stolte, S., Knauer, S.K., Stauber, R.H.: The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem. Soc. Rev. 44(17), 6094–6121 (2015)CrossRefGoogle Scholar
  38. 38.
    Monopoli, M.P., Wan, S., Bombelli, F.B., Mahon, E., Dawson, K.A.: Comparisons of nanoparticle protein corona complexes isolated with different methods. Nano Life 03(04), 1343004 (2013)CrossRefGoogle Scholar
  39. 39.
    Weber, C., Simon, J., Mailänder, V., Morsbach, S., Landfester, K.: Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater. 76, 217–224 (2018)CrossRefGoogle Scholar
  40. 40.
    Lück, M., Paulke, B.-R., Schröder, W., Blunk, T., Müller, R.H.: Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res. 39(3), 478–485 (1998)CrossRefGoogle Scholar
  41. 41.
    Gessner, A., Lieske, A., Paulke, B.-R., Müller, R.H.: Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J. Biomed. Mater. Res. Part A 65A(3), 319–326 (2003)CrossRefGoogle Scholar
  42. 42.
    Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C., Landfester, K., Schild, H., Maskos, M., Knauer, S.K., Stauber, R.H.: Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772 (2013)CrossRefADSGoogle Scholar
  43. 43.
    Zhdanov, V.P., Cho, N.-J.: Kinetics of the formation of a protein corona around nanoparticles. Math. Biosci. 282, 82–90 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Vroman, L., Adams, A.L.: Identification of rapid changes at plasma–solid interfaces. J. Biomed. Mater. Res. 3(1), 43–67 (1969)CrossRefGoogle Scholar
  45. 45.
    Ritz, S., Schöttler, S., Kotman, N., Baier, G., Musyanovych, A., Kuharev, J., Landfester, K., Schild, H., Jahn, O., Tenzer, S., Mailänder, V.: Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16(4), 1311–1321 (2015)CrossRefGoogle Scholar
  46. 46.
    Owens, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharmaceut. 307(1), 93–102 (2006)CrossRefGoogle Scholar
  47. 47.
    Schöttler, S., Becker, G., Winzen, S., Steinbach, T., Mohr, K., Landfester, K., Mailänder, V., Wurm, F.R.: Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372 (2016)CrossRefADSGoogle Scholar
  48. 48.
    Perry, J.L., Reuter, K.G., Kai, M.P., Herlihy, K.P., Jones, S.W., Luft, J.C., Napier, M., Bear, J.E., DeSimone, J.M.: PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12(10), 5304–5310 (2012)CrossRefADSGoogle Scholar
  49. 49.
    Sacchetti, C., Motamedchaboki, K., Magrini, A., Palmieri, G., Mattei, M., Bernardini, S., Rosato, N., Bottini, N., Bottini, M.: Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano 7(3), 1974–1989 (2013)CrossRefGoogle Scholar
  50. 50.
    Gref, R., Lück, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T., Müller, R.H.: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces 18(3–4), 301–313 (2000)Google Scholar
  51. 51.
    Müller, J., Simon, J., Rohne, P., Koch-Brandt, C., Mailänder, V., Morsbach, S., Landfester, K.: Denaturation via surfactants changes composition of protein corona. Biomacromolecules 19(7), 2657–2664 (2018)CrossRefGoogle Scholar
  52. 52.
    Müller, J., Bauer, K.N., Prozeller, D., Simon, J., Mailänder, V., Wurm, F.R., Winzen, S., Landfester, K.: Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials 115, 1–8 (2017)CrossRefGoogle Scholar
  53. 53.
    Schäffler, M., Semmler-Behnke, M., Sarioglu, H., Takenaka, S., Wenk, A., Schleh, C., Hauck, S.M., Johnston, B.D., Kreyling, W.G.: Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology 24(26), 265103 (2013)CrossRefADSGoogle Scholar
  54. 54.
    Miclăuş, T., Bochenkov, V.E., Ogaki, R., Howard, K.A., Sutherland, D.S.: Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett. 14(4), 2086–2093 (2014)CrossRefADSGoogle Scholar
  55. 55.
    Zhou, J.D., Gysell, M., Tara, S., Anthony, M., Darren, M., Rodney, F.M.: Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20(45), 455101 (2009)CrossRefGoogle Scholar
  56. 56.
    Feiner-Gracia, N., Beck, M., Pujals, S., Tosi, S., Mandal, T., Buske, C., Linden, M., Albertazzi, L.: Super-resolution microscopy unveils dynamic heterogeneities in nanoparticle protein corona. Small 13(41), 1701631–n/a (2017)Google Scholar
  57. 57.
    Welsher, K., Liu, Z., Sherlock, S.P., Robinson, J.T., Chen, Z., Daranciang, D., Dai, H.: A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773 (2009)CrossRefADSGoogle Scholar
  58. 58.
    Wan, S., Kelly, P.M., Mahon, E., Stöckmann, H., Rudd, P.M., Caruso, F., Dawson, K.A., Yan, Y., Monopoli, M.P.: The “Sweet” side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. ACS Nano 9(2), 2157–2166 (2015)CrossRefGoogle Scholar
  59. 59.
    Lynch, I., Dawson, K.A.: Protein-nanoparticle interactions. Nano Today 3(1), 40–47 (2008)CrossRefGoogle Scholar
  60. 60.
    Nguyen, V.H., Lee, B.-J.: Protein corona: a new approach for nanomedicine design. Int. J. Nanomed. 12, 3137–3151 (2017)CrossRefGoogle Scholar
  61. 61.
    Patel, H.M.: Serum opsonins and liposomes: their interaction and opsonophagocytosis. Crit. Rev. Ther. Drug Carrier Syst. 9(1), 39–90 (1992)MathSciNetGoogle Scholar
  62. 62.
    Chonn, A., Semple, S.C., Cullis, P.R.: Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J. Biol. Chem. 267(26), 18759–19765 (1992)Google Scholar
  63. 63.
    Tyrrell, D.A., Richardson, V.J., Ryman, B.E.: The effect of serum protein fractions on liposome-cell interactions in cultured cells and the perfused rat liver. Biochim. Biophys. Acta (BBA) Gen. Subj. 497(2), 469–480 (1977)Google Scholar
  64. 64.
    Göppert, T.M., Müller, R.H.: Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J. Drug Target. 13(3), 179–187 (2005)CrossRefGoogle Scholar
  65. 65.
    Mirshafiee, V., Kim, R., Park, S., Mahmoudi, M., Kraft, M.L.: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 75, 295–304 (2016)CrossRefGoogle Scholar
  66. 66.
    Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)Google Scholar
  67. 67.
    Corbo, C., Molinaro, R., Parodi, A., Toledano Furman, N.E., Salvatore, F., Tasciotti, E.: The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11(1), 81–100 (2016)CrossRefGoogle Scholar
  68. 68.
    Salvati, A., Pitek, A.S., Monopoli, M.P., Prapainop, K., Bombelli, F.B., Hristov, D.R., Kelly, P.M., Åberg, C., Mahon, E., Dawson, K.A.: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137 (2013)CrossRefADSGoogle Scholar
  69. 69.
    Landgraf, L., Christner, C., Storck, W., Schick, I., Krumbein, I., Dähring, H., Haedicke, K., Heinz-Herrmann, K., Teichgräber, U., Reichenbach, J.R., Tremel, W., Tenzer, S., Hilger, I.: A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles. Biomaterials 68, 77–88 (2015)CrossRefGoogle Scholar
  70. 70.
    Ge, C., Du, J., Zhao, L., Wang, L., Liu, Y., Li, D., Yang, Y., Zhou, R., Zhao, Y., Chai, Z., Chen, C.: Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 108(41), 16968–16973 (2011)CrossRefADSGoogle Scholar
  71. 71.
    Wang, F., Yu, L., Monopoli, M.P., Sandin, P., Mahon, E., Salvati, A., Dawson, K.A.: The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine Nanotechnol. Biol. Med. 9(8), 1159–1168 (2013)Google Scholar
  72. 72.
    Lee, I.S., Lee, N., Park, J., Kim, B.H., Yi, Y.-W., Kim, T., Kim, T.K., Lee, I.H., Paik, S.R., Hyeon, T.: Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. JACS 128(33), 10658–10659 (2006)CrossRefGoogle Scholar
  73. 73.
    Capriotti, A.L., Caracciolo, G., Cavaliere, C., Colapicchioni, V., Piovesana, S., Pozzi, D., Laganà, A.: Analytical methods for characterizing the nanoparticle-protein corona. Chromatographia 77(11), 755–769 (2014)CrossRefGoogle Scholar
  74. 74.
    Li, L., Mu, Q., Zhang, B., Yan, B.: Analytical strategies for detecting nanoparticle-protein interactions. The Analyst 135(7), 1519–1530 (2010)CrossRefADSGoogle Scholar
  75. 75.
    Mahmoudi, M., Lynch, I., Ejtehadi, M.R., Monopoli, M.P., Bombelli, F.B., Laurent, S.: Protein–nanoparticle interactions: opportunities and challenges. Chem. Rev. 111(9), 5610–5637 (2011)CrossRefGoogle Scholar
  76. 76.
    Aggarwal, P., Hall, J.B., McLeland, C.B., Dobrovolskaia, M.A., McNeil, S.E.: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61(6), 428–437 (2009)CrossRefGoogle Scholar
  77. 77.
    Levy, R., Thanh, N.T.K., Doty, R.C., Hussain, I., Nichols, R.J., Schiffrin, D.J., Brust, M., Fernig, D.G.: Rational and combinatorial design of peptide capping Ligands for gold nanoparticles. JACS 126(32), 10076–10084 (2004)CrossRefGoogle Scholar
  78. 78.
    Aubin-Tam, M.-E., Hamad-Schifferli, K.: Gold nanoparticle–cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21(26), 12080–12084 (2005)CrossRefGoogle Scholar
  79. 79.
    Ashby, J., Schachermeyer, S., Pan, S., Zhong, W.: Dissociation-based screening of nanoparticle-protein interaction via flow field-flow fractionation. Anal. Chem. 85(15), 7494–7501 (2013)CrossRefGoogle Scholar
  80. 80.
    Aleksenko, S.S., Shmykov, A.Y., Oszwaldowski, S., Timerbaev, A.R.: Interactions of tumour-targeting nanoparticles with proteins: potential of using capillary electrophoresis as a direct probe. Metallomics 4(11), 1141–1148 (2012)CrossRefGoogle Scholar
  81. 81.
    Kim, H.R., Andrieux, K., Delomenie, C., Chacun, H., Appel, M., Desmaele, D., Taran, F., Georgin, D., Couvreur, P., Taverna, M.: Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and protein Lab-on-chip((R)) system. Electrophoresis 28(13), 2252–2261 (2007)CrossRefGoogle Scholar
  82. 82.
    Brambilla, D., Verpillot, R., Taverna, M., De Kimpe, L., Le Droumaguet, B., Nicolas, J., Canovi, M., Gobbi, M., Mantegazza, F., Salmona, M., Nicolas, V., Scheper, W., Couvreur, P., Andrieux, K.: New method based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) to monitor interaction between nanoparticles and the amyloid-beta peptide. Anal. Chem. 82(24), 10083–10089 (2010)CrossRefGoogle Scholar
  83. 83.
    Brambilla, D., Verpillot, R., Le Droumaguet, B., Nicolas, J., Taverna, M., Kona, J., Lettiero, B., Hashemi, S.H., De Kimpe, L., Canovi, M., Gobbi, M., Nicolas, V., Scheper, W., Moghimi, S.M., Tvaroska, I., Couvreur, P., Andrieux, K.: PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano 6(7), 5897–5908 (2012)CrossRefGoogle Scholar
  84. 84.
    Chang, C.W., Tseng, W.L.: Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma. Anal. Chem. 82(7), 2696–2702 (2010)CrossRefGoogle Scholar
  85. 85.
    Chen, F., Wang, G., Griffin, J.I., Brenneman, B., Banda, N.K., Holers, V.M., Backos, D.S., Wu, L., Moghimi, S.M., Simberg, D.: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol. 12, 387 (2016)CrossRefADSGoogle Scholar
  86. 86.
    García-Álvarez, R., Hadjidemetriou, M., Sánchez-Iglesias, A., Liz-Marzán, L.M., Kostarelos, K.: In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 10(3), 1256–1264 (2018)Google Scholar
  87. 87.
    Caracciolo, G., Pozzi, D., De Sanctis, S.C., Capriotti, A.L., Caruso, G., Samperi, R., Lagana, A.: Effect of membrane charge density on the protein corona of cationic liposomes: interplay between cationic charge and surface area. Appl. Phys. Lett. 99(3) (2011)Google Scholar
  88. 88.
    Dutta, D., Sundaram, S.K., Teeguarden, J.G., Riley, B.J., Fifield, L.S., Jacobs, J.M., Addleman, S.R., Kaysen, G.A., Moudgil, B.M., Weber, T.J.: Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100(1), 303–315 (2007)CrossRefGoogle Scholar
  89. 89.
    Salvador-Morales, C., Flahaut, E., Sim, E., Sloan, J., Green, M.L., Sim, R.B.: Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43(3), 193–201 (2006)CrossRefGoogle Scholar
  90. 90.
    Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 105(38), 14265–14270 (2008)CrossRefADSGoogle Scholar
  91. 91.
    Stolnik, S., Daudali, B., Arien, A., Whetstone, J., Heald, C.R., Garnett, M.C., Davis, S.S., Illum, L.: The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim. Biophys. Acta (BBA) Biomembr. 1514(2), 261–279 (2001)Google Scholar
  92. 92.
    Arora, P.S., Yamagiwa, H., Srivastava, A., Bolander, M.E., Sarkar, G.: Comparative evaluation of two two-dimensional gel electrophoresis image analysis software applications using synovial fluids from patients with joint disease. J. Orthop. Sci. 10(2), 160–166 (2005)CrossRefGoogle Scholar
  93. 93.
    Lai, Z.W., Yan, Y., Caruso, F., Nice, E.C.: Emerging techniques in proteomics for probing nano-bio interactions. ACS Nano 6(12), 10438–10448 (2012)CrossRefGoogle Scholar
  94. 94.
    Kim, H.R., Andrieux, K., Gil, S., Taverna, M., Chacun, H., Desmaële, D., Taran, F., Georgin, D., Couvreur, P.: Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 8(3), 793–799 (2007)CrossRefGoogle Scholar
  95. 95.
    Chang, S.Y., Zheng, N.-Y., Chen, C.-S., Chen, C.-D., Chen, Y.-Y., Wang, C.R.C.: Analysis of peptides and proteins affinity-bound to iron oxide nanoparticles by MALDI MS. J. Am. Soc. Mass Spectrom. 18(5), 910–918 (2007)CrossRefGoogle Scholar
  96. 96.
    Chittur, K.K.: FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19(4), 357–369 (1998)CrossRefGoogle Scholar
  97. 97.
    Goormaghtigh, E., Gasper, R., Bénard, A., Goldsztein, A., Raussens, V.: Protein secondary structure content in solution, films and tissues: redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1794(9), 1332–1343 (2009)Google Scholar
  98. 98.
    Shao, M., Lu, L., Wang, H., Luo, S., Ma, D.D.D.: Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchim. Acta 164(1), 157–160 (2009)CrossRefGoogle Scholar
  99. 99.
    Royer, C.A.: Probing protein folding and conformational transitions with fluorescence. Chem. Rev. 106(5), 1769–1784 (2006)CrossRefGoogle Scholar
  100. 100.
    Mátyus, L., Szöllősi, J., Jenei, A.: Steady-state fluorescence quenching applications for studying protein structure and dynamics. J. Photochem. Photobiol. B 83(3), 223–236 (2006)CrossRefGoogle Scholar
  101. 101.
    Vilanova, O., Mittag, J.J., Kelly, P.M., Milani, S., Dawson, K.A., Rädler, J.O., Franzese, G.: Understanding the kinetics of protein-nanoparticle corona formation. ACS Nano 10(12), 10842–10850 (2016)CrossRefGoogle Scholar
  102. 102.
    Kelly, S.M., Jess, T.J., Price, N.C.: How to study proteins by circular dichroism. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1751(2), 119–139 (2005)Google Scholar
  103. 103.
    Shang, L., Wang, Y., Jiang, J., Dong, S.: pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23(5), 2714–2721 (2007)CrossRefGoogle Scholar
  104. 104.
    Deng, Z.J., Liang, M., Monteiro, M., Toth, I., Minchin, R.F.: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 6, 39 (2010)CrossRefADSGoogle Scholar
  105. 105.
    Ceccon, A., Lelli, M., D’Onofrio, M., Molinari, H., Assfalg, M.: Dynamics of a globular protein adsorbed to liposomal nanoparticles. JACS 136(38), 13158–13161 (2014)CrossRefGoogle Scholar
  106. 106.
    Stayton, P.S., Drobny, G.P., Shaw, W.J., Long, J.R., Gilbert, M.: Molecular recognition at the protein-hydroxyapatite interface. Crit. Rev. Oral Biol. Med. 14(5), 370–376 (2003)CrossRefGoogle Scholar
  107. 107.
    Carril, M., Padro, D., del Pino, P., Carrillo-Carrion, C., Gallego, M., Parak, W.J.: In situ detection of the protein corona in complex environments. Nat. Commun. 8(1), 1542 (2017)CrossRefADSGoogle Scholar
  108. 108.
    Baier, G., Costa, C., Zeller, A., Baumann, D., Sayer, C., Araujo, P.H.H., Mailänder, V., Musyanovych, A., Landfester, K.: BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol. Biosci. 11(5), 628–638 (2011)CrossRefGoogle Scholar
  109. 109.
    Lindman, S., Lynch, I., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S.: Systematic investigation of the thermodynamics of HSA adsorption to N-iso-Propylacrylamide/N-tert-Butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 7(4), 914–920 (2007)Google Scholar
  110. 110.
    Laera, S., Ceccone, G., Rossi, F., Gilliland, D., Hussain, R., Siligardi, G., Calzolai, L.: Measuring protein structure and stability of protein-nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett. 11(10), 4480–4484 (2011)CrossRefADSGoogle Scholar
  111. 111.
    Bhogale, A., Patel, N., Mariam, J., Dongre, P.M., Miotello, A., Kothari, D.C.: Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Colloids Surf. B 113, 276–284 (2014)CrossRefGoogle Scholar
  112. 112.
    Astegno, A., Maresi, E., Marino, V., Dominici, P., Pedroni, M., Piccinelli, F., Dell’Orco, D.: Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function. Nanoscale 6(24), 15037–15047 (2014)CrossRefADSGoogle Scholar
  113. 113.
    Huang, R., Carney, R.P., Ikuma, K., Stellacci, F., Lau, B.L.T.: Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations. ACS Nano 8(6), 5402–5412 (2014)CrossRefGoogle Scholar
  114. 114.
    Michen, B., Geers, C., Vanhecke, D., Endes, C., Rothen-Rutishauser, B., Balog, S., Petri-Fink, A.: Avoiding drying-artifacts in transmission electron microscopy: characterizing the size and colloidal state of nanoparticles. Sci. Rep. 5, 9793 (2015)CrossRefADSGoogle Scholar
  115. 115.
    Balog, S., Rodriguez-Lorenzo, L., Monnier, C.A., Obiols-Rabasa, M., Rothen-Rutishauser, B., Schurtenberger, P., Petri-Fink, A.: Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering. Nanoscale 7(14), 5991–5997 (2015)CrossRefADSGoogle Scholar
  116. 116.
    Sharifi, S., Behzadi, S., Laurent, S., Laird Forrest, M., Stroeve, P., Mahmoudi, M.: Toxicity of nanomaterials. Chem. Soc. Rev. 41(6), 2323–2343 (2012)CrossRefGoogle Scholar
  117. 117.
    Lin, P.-C., Lin, S., Wang, P.C., Sridhar, R.: Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 32(4), 711–726 (2014)CrossRefGoogle Scholar
  118. 118.
    Treuel, L., Eslahian, K.A., Docter, D., Lang, T., Zellner, R., Nienhaus, K., Nienhaus, G.U., Stauber, R.H., Maskos, M.: Physicochemical characterization of nanoparticles and their behavior in the biological environment. Phys. Chem. Chem. Phys. 16(29), 15053–15067 (2014)CrossRefGoogle Scholar
  119. 119.
    Cho, E.C., Liu, Y., Xia, Y.: A simple spectroscopic method for differentiating cellular uptakes of gold nanospheres and nanorods from their mixtures. Angew. Chem. Int. Ed. 49(11), 1976–1980 (2010)CrossRefGoogle Scholar
  120. 120.
    Rischitor, G., Parracino, M., La Spina, R., Urbán, P., Ojea-Jiménez, I., Bellido, E., Valsesia, A., Gioria, S., Capomaccio, R., Kinsner-Ovaskainen, A., Gilliland, D., Rossi, F., Colpo, P.: Quantification of the cellular dose and characterization of nanoparticle transport during in vitro testing. Part. Fibre Toxicol. 13(1), 47 (2016)CrossRefGoogle Scholar
  121. 121.
    Cho, E.C., Zhang, Q., Xia, Y.: The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 6, 385 (2011)CrossRefADSGoogle Scholar
  122. 122.
    Mukherjee, D., Leo, B.F., Royce, S.G., Porter, A.E., Ryan, M.P., Schwander, S., Chung, K.F., Tetley, T.D., Zhang, J., Georgopoulos, P.G.: Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver. J. Nanopart. Res. 16(10), 2616 (2014)CrossRefADSGoogle Scholar
  123. 123.
    Hinderliter, P.M., Minard, K.R., Orr, G., Chrisler, W.B., Thrall, B.D., Pounds, J.G., Teeguarden, J.G.: ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part. Fibre Toxicol. 7(1), 36 (2010)CrossRefGoogle Scholar
  124. 124.
    DeLoid, G., Cohen, J.M., Darrah, T., Derk, R., Rojanasakul, L., Pyrgiotakis, G., Wohlleben, W., Demokritou, P.: Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 5, 3514 (2014)CrossRefADSGoogle Scholar
  125. 125.
    DeLoid, G.M., Cohen, J.M., Pyrgiotakis, G., Pirela, S.V., Pal, A., Liu, J., Srebric, J., Demokritou, P.: Advanced computational modeling for in vitro nanomaterial dosimetry. Part. Fibre Toxicol. 12, 32 (2015)CrossRefGoogle Scholar
  126. 126.
    Rodriguez-Lorenzo, L., Rothen-Rutishauser, B., Petri-Fink, A., Balog, S.: Nanoparticle polydispersity can strongly affect in vitro dose. Part. Part. Syst. Charact. 32(3), 321–333 (2015)CrossRefGoogle Scholar
  127. 127.
    Thomas, D.G., Smith, J.N., Thrall, B.D., Baer, D.R., Jolley, H., Munusamy, P., Kodali, V., Demokritou, P., Cohen, J., Teeguarden, J.G.: ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Part. Fibre Toxicol. 15(1), 6 (2018)CrossRefGoogle Scholar
  128. 128.
    Zhang, S., Li, J., Lykotrafitis, G., Bao, G., Suresh, S.: Size-dependent endocytosis of nanoparticles. Adv. Mater. 21(4), 419–424 (2009)CrossRefGoogle Scholar
  129. 129.
    Abhishek, C., Giuseppe, B., Ramin, G.: The effect of interactions on the cellular uptake of nanoparticles. Phys. Biol. 8(4), 046002 (2011)CrossRefGoogle Scholar
  130. 130.
    Kinnear, C., Moore, T.L., Rodriguez-Lorenzo, L., Rothen-Rutishauser, B., Petri-Fink, A.: Form follows function: nanoparticle shape and its implications for nanomedicine. Chem. Rev. 117(17), 11476–11521 (2017)CrossRefGoogle Scholar
  131. 131.
    Sadik, O.A.: Anthropogenic nanoparticles in the environment. Environ. Sci. Process. Impacts 15(1), 19–20 (2013)CrossRefGoogle Scholar
  132. 132.
    Buzea, C., Pacheco, I.I., Robbie, K.: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), Mr17–Mr71 (2007)Google Scholar
  133. 133.
    Kuhlbusch, T., Asbach, C., Fissan, H., Gohler, D., Stintz, M.: Nanoparticle exposure at nanotechnology workplaces: a review. Part. Fibre Toxicol. 8(1), 22 (2011)CrossRefGoogle Scholar
  134. 134.
    Drasler, B., Sayre, P., Steinhauser, K.G., Petri-Fink, A., Rothen-Rutishauser, B.: In vitro approaches to assess the hazard of nanomaterials. Nanoimpact 8, 99–116 (2017)CrossRefGoogle Scholar
  135. 135.
    Mühlfeld, C., Rothen-Rutishauser, B., Blank, F., Vanhecke, D., Ochs, M., Gehr, P.: Interactions of nanoparticles with pulmonary structures and cellular responses. AJP-Lung 294(5), L817–L829 (2008)Google Scholar
  136. 136.
    Conner, S.D., Schmid, S.L.: Regulated portals of entry into the cell. Nature 422, 37 (2003)CrossRefADSGoogle Scholar
  137. 137.
    Aderem, A., Underhill, D.M.: Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17(1), 593–623 (1999)CrossRefGoogle Scholar
  138. 138.
    Spector, A.A., Yorek, M.A.: Membrane lipid composition and cellular function. J. Lipid Res. 26(9), 1015–1035 (1985)Google Scholar
  139. 139.
    Kuhn, D.A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., Rothen-Rutishauser, B.: Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotech. 5, 1625–1636 (2014)CrossRefGoogle Scholar
  140. 140.
    Mahmoudi, M., Saeedi-Eslami, S.N., Shokrgozar, M.A., Azadmanesh, K., Hassanlou, M., Kalhor, H.R., Burtea, C., Rothen-Rutishauser, B., Laurent, S., Sheibani, S., Vali, H.: Cell “vision”: complementary factor of protein corona in nanotoxicology. Nanoscale 4(17), 5461–5468 (2012)CrossRefADSGoogle Scholar
  141. 141.
    Feliu, N., Hühn, J., Zyuzin, M.V., Ashraf, S., Valdeperez, D., Masood, A., Said, A.H., Escudero, A., Pelaz, B., Gonzalez, E., Duarte, M.A.C., Roy, S., Chakraborty, I., Lim, M.L., Sjöqvist, S., Jungebluth, P., Parak, W.J.: Quantitative uptake of colloidal particles by cell cultures. Sci. Total Environ. 568, 819–828 (2016)CrossRefADSGoogle Scholar
  142. 142.
    Donaldson, K., Stone, V., Borm, P.J.A., Jimenez, L.A., Gilmour, P.S., Schins, R.P.F., Knaapen, A.M., Rahman, I., Faux, S.P., Brown, D.M., MacNee, W.: Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic. Biol. Med. 34(11), 1369–1382 (2003)CrossRefGoogle Scholar
  143. 143.
    Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A.H., Seaton, A., Stone, V., Brown, S., MacNee, W., Donaldson, K.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423 (2008)CrossRefGoogle Scholar
  144. 144.
    Schins, R.P.F., Knaapen, A.M.: Genotoxicity of poorly soluble particles. Inhal. Toxicol. 19(sup1), 189–198 (2007)CrossRefGoogle Scholar
  145. 145.
    Krug, H.F., Wick, P.: Nanotoxicology: an interdisciplinary challenge. Angew. Chem. Int. Ed. 50(6), 1260–1278 (2011)CrossRefGoogle Scholar
  146. 146.
    Paur, H.-R., Cassee, F.R., Teeguarden, J., Fissan, H., Diabate, S., Aufderheide, M., Kreyling, W.G., Hänninen, O., Kasper, G., Riediker, M., Rothen-Rutishauser, B., Schmid, O.: In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—a dialog between aerosol science and biology. J. Aerosol Sci. 42(10), 668–692 (2011)CrossRefADSGoogle Scholar
  147. 147.
    Bourquin, J., Milosevic, A., Hauser, D., Lehner, R., Blank, F., Petri-Fink, A., Rothen-Rutishauser, B.: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater., 1704307 (2018)Google Scholar
  148. 148.
    Geers, C., Rodriguez-Lorenzo, L., Andreas Urban, D., Kinnear, C., Petri-Fink, A., Balog, S.: A new angle on dynamic depolarized light scattering: number-averaged size distribution of nanoparticles in focus. Nanoscale 8(34), 15813–15821 (2016)CrossRefGoogle Scholar
  149. 149.
    Mehan, S., Chinchalikar, A.J., Kumar, S., Aswal, V.K., Schweins, R.: Small-angle neutron scattering study of structure and interaction of nanoparticle, protein, and surfactant complexes. Langmuir 29(36), 11290–11299 (2013)CrossRefGoogle Scholar
  150. 150.
    Spinozzi, F., Ceccone, G., Moretti, P., Campanella, G., Ferrero, C., Combet, S., Ojea-Jimenez, I., Ghigna, P.: Structural and thermodynamic properties of nanoparticle-protein complexes: a combined SAXS and SANS study. Langmuir 33(9), 2248–2256 (2017)CrossRefGoogle Scholar
  151. 151.
    Diroll, B.T., Weigandt, K.M., Jishkariani, D., Cargnello, M., Murphy, R.J., Hough, L.A., Murray, C.B., Donnio, B.: Quantifying “Softness” of organic coatings on gold nanoparticles using correlated small-angle X-ray and neutron scattering. Nano Lett. 15(12), 8008–8012 (2015)CrossRefADSGoogle Scholar
  152. 152.
    Bhattacharjee, S.: DLS and zeta potential—what they are and what they are not? J. Contr. Release 235, 337–351 (2016)CrossRefGoogle Scholar
  153. 153.
    Huang, Y., Wang, X.B., Becker, F.F., Gascoyne, P.R.: Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys. J. 73(2), 1118–1129 (1997)CrossRefGoogle Scholar
  154. 154.
    Uma, B., Swaminathan, T.N., Radhakrishnan, R., Eckmann, D.M., Ayyaswamy, P.S.: Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields. Phys. Fluids 23(7), 073602 (2011)CrossRefADSGoogle Scholar
  155. 155.
    Das, S., Kundu, A., Hossain, S.M., Saha, H., Datta, S.K.: Effect of size on the scattering properties of silica nanoparticles. In: 2014 IEEE 2nd International Conference on Emerging Electronics (ICEE), 3–6 December 2014, pp. 1–4 (2014)Google Scholar
  156. 156.
    Horiba Instruments, I.: Zeta Potential of Bovine Serum Albumin (BSA) Protein. Irvine, CA, U.S.A (2009)Google Scholar
  157. 157.
    Vanhecke, D., Kuhn, D.A., Jimenez de Aberasturi, D., Balog, S., Milosevic, A., Urban, D., Peckys, D., de Jonge, N., Parak, W.J., Petri-Fink, A., Rothen-Rutishauser, B.: Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages. Beilstein J. Nanotechnol. 8, 2396–2409 (2017)Google Scholar
  158. 158.
    Nuhn, L., Gietzen, S., Mohr, K., Fischer, K., Toh, K., Miyata, K., Matsumoto, Y., Kataoka, K., Schmidt, M., Zentel, R.: Aggregation behavior of cationic nanohydrogel particles in human blood serum. Biomacromolecules 15(4), 1526–1533 (2014)CrossRefGoogle Scholar
  159. 159.
    Rausch, K., Reuter, A., Fischer, K., Schmidt, M.: Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 11(11), 2836–2839 (2010)CrossRefGoogle Scholar
  160. 160.
    Hemmelmann, M., Mohr, K., Fischer, K., Zentel, R., Schmidt, M.: Interaction of pHPMA–pLMA copolymers with human blood serum and its components. Mol. Pharm. 10(10), 3769–3775 (2013)CrossRefGoogle Scholar
  161. 161.
    Barisik, M., Atalay, S., Beskok, A., Qian, S.: Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C 118(4), 1836–1842 (2014)CrossRefGoogle Scholar
  162. 162.
    Durantie, E., Vanhecke, D., Rodriguez-Lorenzo, L., Delhaes, F., Balog, S., Septiadi, D., Bourquin, J., Petri-Fink, A., Rothen-Rutishauser, B.: Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface. Part. Fibre Toxicol. 14(1), 49 (2017)CrossRefGoogle Scholar
  163. 163.
    Balog, S., Rodriguez-Lorenzo, L., Monnier, C.A., Michen, B., Obiols-Rabasa, M., Casal-Dujat, L., Rothen-Rutishauser, B., Petri-Fink, A., Schurtenberger, P.: Dynamic depolarized light scattering of small round plasmonic nanoparticles: when imperfection is only perfect. J. Phys. Chem. C 118(31), 17968–17974 (2014)CrossRefGoogle Scholar
  164. 164.
    Hirsch, V., Kinnear, C., Rodriguez-Lorenzo, L., Monnier, C.A., Rothen-Rutishauser, B., Balog, S., Petri-Fink, A.: In vitro dosimetry of agglomerates. Nanoscale 6(13), 7325–7331 (2014)CrossRefADSGoogle Scholar
  165. 165.
    Pal, N., Verma, S.D., Singh, M.K., Sen, S.: Fluorescence correlation spectroscopy: an efficient tool for measuring size, size-distribution and polydispersity of microemulsion droplets in solution. Anal. Chem. 83(20), 7736–7744 (2011)CrossRefGoogle Scholar
  166. 166.
    Shang, L., Nienhaus, G.U.: In situ characterization of protein adsorption onto nanoparticles by fluorescence correlation spectroscopy. Acc. Chem. Res. 50(2), 387–395 (2017)CrossRefGoogle Scholar
  167. 167.
    Milosevic, A.M., Rodriguez-Lorenzo, L., Balog, S., Monnier, C.A., Petri-Fink, A., Rothen-Rutishauser, B.: Assessing the stability of fluorescently encoded nanoparticles in lysosomes by using complementary methods. Angew. Chem. Int. Ed. Engl. 56(43), 13382–13386 (2017)CrossRefGoogle Scholar
  168. 168.
    Silvestri, A., Di Silvio, D., Llarena, I., Murray, R.A., Marelli, M., Lay, L., Polito, L., Moya, S.E.: Influence of surface coating on the intracellular behaviour of gold nanoparticles: a fluorescence correlation spectroscopy study. Nanoscale 9(38), 14730–14739 (2017)CrossRefGoogle Scholar
  169. 169.
    Yang, W., Lu, J., Gilbert, E.P., Knott, R., He, L., Cheng, W.: Probing soft corona structures of DNA-capped nanoparticles by small angle neutron scattering. J. Phys. Chem. C 119(32), 18773–18778 (2015)CrossRefGoogle Scholar
  170. 170.
    Camarero-Espinosa, S., Endes, C., Mueller, S., Petri-Fink, A., Rothen-Rutishauser, B., Weder, C., Clift, M.J.D., Foster, E.J.: Elucidating the potential biological impact of cellulose nanocrystals. Fibers 4(3) (2016)Google Scholar
  171. 171.
    Kinnear, C., Balog, S., Rothen-Rutishauser, B., Petri-Fink, A.: Thermally reversible self-assembly of nanoparticles via polymer crystallization. Macromol. Rapid Commun. 35(23), 2012–2017 (2014)CrossRefGoogle Scholar
  172. 172.
    Dorofeev, G.A., Streletskii, A.N., Povstugar, I.V., Protasov, A.V., Elsukov, E.P.: Determination of nanoparticle sizes by X-ray diffraction. Colloid J. 74(6), 675–685 (2012)CrossRefGoogle Scholar
  173. 173.
    Urban, D.A., Milosevic, A.M., Bossert, D., Crippa, F., Moore, T.L., Geers, C., Balog, S., Rothen-Rutishauser, B., Petri-Fink, A.: Taylor dispersion of inorganic nanoparticles and comparison to dynamic light scattering and transmission electron microscopy. Colloid Interface Sci. Commun. 22, 29–33 (2018)CrossRefGoogle Scholar
  174. 174.
    Balog, S., Urban, D.A., Milosevic, A.M., Crippa, F., Rothen-Rutishauser, B., Petri-Fink, A.: Taylor dispersion of nanoparticles. J. Nanopart. Res. 19(8) (2017)Google Scholar
  175. 175.
    Zhang, D., Neumann, O., Wang, H., Yuwono, V.M., Barhoumi, A., Perham, M., Hartgerink, J.D., Wittung-Stafshede, P., Halas, N.J.: Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 9(2), 666–671 (2009)CrossRefADSGoogle Scholar
  176. 176.
    Bekdemir, A., Stellacci, F.: A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles. Nat. Commun. 7, 13121 (2016)CrossRefADSGoogle Scholar
  177. 177.
    Walter, J., Löhr, K., Karabudak, E., Reis, W., Mikhael, J., Peukert, W., Wohlleben, W., Cölfen, H.: Multidimensional analysis of nanoparticles with highly disperse properties using multiwavelength analytical ultracentrifugation. ACS Nano 8(9), 8871–8886 (2014)CrossRefGoogle Scholar
  178. 178.
    Ashby, J., Pan, S., Zhong, W.: Size and surface functionalisation of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl. Mater. Interfaces 6(17), 15412–15419 (2014)CrossRefGoogle Scholar
  179. 179.
    Zook, J.M., Rastogi, V., MacCuspie, R.I., Keene, A.M., Fagan, J.: Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano 5(10), 8070–8079 (2011)CrossRefGoogle Scholar
  180. 180.
    Planken, K.L., Colfen, H.: Analytical ultracentrifugation of colloids. Nanoscale 2(10), 1849–1869 (2010)CrossRefADSGoogle Scholar
  181. 181.
    Gigault, J., Pettibone, J.M., Schmitt, C., Hackley, V.A.: Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal. Chim. Acta 809, 9–24 (2014)CrossRefGoogle Scholar
  182. 182.
    Kozak, D., Anderson, W., Vogel, R., Trau, M.: Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection. Nano Today 6(5), 531–545 (2011)CrossRefGoogle Scholar
  183. 183.
    Blundell, E.L.C.J., Healey, M.J., Holton, E., Sivakumaran, M., Manstana, S., Platt, M.: Characterisation of the protein corona using tunable resistive pulse sensing: determining the change and distribution of a particle’s surface charge. Anal. Bioanal. Chem. 408(21), 5757–5768 (2016)CrossRefGoogle Scholar
  184. 184.
    Sikora, A., Shard, A.G., Minelli, C.: Size and ζ-potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing. Langmuir 32(9), 2216–2224 (2016)CrossRefGoogle Scholar
  185. 185.
    Cipelletti, L., Biron, J.-P., Martin, M., Cottet, H.: Polydispersity analysis of taylor dispersion data: the cumulant method. Anal. Chem. 86(13), 6471–6478 (2014)CrossRefGoogle Scholar
  186. 186.
    Balog, S.: Taylor dispersion of polydisperse nanoclusters and nanoparticles: modeling, simulation, and analysis. Anal. Chem. (2018)Google Scholar
  187. 187.
    Dominguez, D., Alhusain, M., Alharbi, N., Bernussi, A., Grave de Peralta, L.: Fourier plane imaging microscopy for detection of plasmonic crystals with periods beyond the optical diffraction limit, vol. 10 (2015)Google Scholar
  188. 188.
    Gustafsson, M.G.L.: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(2), 82–87 (2000)CrossRefGoogle Scholar
  189. 189.
    Chang, B.-J., Lin, S.H., Chou, L.-J., Chiang, S.-Y.: Subdiffraction scattered light imaging of gold nanoparticles using structured illumination. Opt. Lett. 36(24), 4773–4775 (2011)CrossRefADSGoogle Scholar
  190. 190.
    Vainrub, A., Pustovyy, O., Vodyanoy, V.: Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser. Opt. Lett. 31(19), 2855–2857 (2006)CrossRefADSGoogle Scholar
  191. 191.
    Guttenberg, M., Bezerra, L., Neu-Baker, N.M., del Pilar Sosa Peña, M., Elder, A., Oberdörster, G., Brenner, S.A.: Biodistribution of inhaled metal oxide nanoparticles mimicking occupational exposure: a preliminary investigation using enhanced darkfield microscopy. J. Biophotonics 9(10), 987–993 (2016)Google Scholar
  192. 192.
    Peña, M.D.P.S., Gottipati, A., Tahiliani, S., Neu-Baker, N.M., Frame, M.D., Friedman, A.J., Brenner, S.A.: Hyperspectral imaging of nanoparticles in biological samples: simultaneous visualization and elemental identification. Microsc. Res. Tech. 79(5), 349–358 (2016)CrossRefGoogle Scholar
  193. 193.
    Monnier, C.A., Lattuada, M., Burnand, D., Crippa, F., Martinez-Garcia, J.C., Hirt, A.M., Rothen-Rutishauser, B., Bonmarin, M., Petri-Fink, A.: A lock-in-based method to examine the thermal signatures of magnetic nanoparticles in the liquid, solid and aggregated states. Nanoscale 8(27), 13321–13332 (2016)CrossRefADSGoogle Scholar
  194. 194.
    Drasler, B., Vanhecke, D., Rodriguez-Lorenzo, L., Petri-Fink, A., Rothen-Rutishauser, B.: Quantifying nanoparticle cellular uptake: which method is best? Nanomedicine 12(10), 1095–1099 (2017)CrossRefGoogle Scholar
  195. 195.
    Vanhecke, D., Rodriguez-Lorenzo, L., Clift, M.J.D., Blank, F., Petri-Fink, A., Rothen-Rutishauser, B.: Quantification of nanoparticles at the single-cell level: an overview about state-of-the-art techniques and their limitations. Nanomedicine 9(12), 1885–1900 (2014)CrossRefGoogle Scholar
  196. 196.
    Thieme, J., McNult, I., Vogt, S., Paterson, D.: X-ray spectromicroscopy—a tool for environmental sciences. Environ. Sci. Technol. 41(20), 6885–6889 (2007)CrossRefADSGoogle Scholar
  197. 197.
    Lawrence, J., Dynes, J., Korber, D., Swerhone, G., Leppard, G., Hitchcock, A.P.: Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM), vol. 329, pp. 18–25 (2011)Google Scholar
  198. 198.
    Takechi-Haraya, Y., Goda, Y., Sakai-Kato, K.: Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy. Anal. Bioanal. Chem. 410(5), 1525–1531 (2018)CrossRefGoogle Scholar
  199. 199.
    Cazaux, J.: Material contrast in SEM: fermi energy and work function effects. Ultramicroscopy 110(3), 242–253 (2010)CrossRefGoogle Scholar
  200. 200.
    Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P., Dahmen, U.: Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. Microanal. 14(5), 469–477 (2008)Google Scholar
  201. 201.
    Liu, J.: Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems. J. Electron. Microsc. 54(3), 251–278 (2005)Google Scholar
  202. 202.
    Michen, B., Geers, C., Vanhecke, D., Endes, C., Rothen-Rutishauser, B., Balog, S., Petri-Fink, A.: Avoiding drying-artifacts in transmission electron microscopy: characterizing the size and colloidal state of nanoparticles. Sci. Rep. 5 (2015)Google Scholar
  203. 203.
    Ahmad, N., Wang, G., Nelayah, J., Ricolleau, C., Alloyeau, D.: Exploring the formation of symmetric gold nanostars by liquid-cell transmission electron microscopy. Nano Lett. 17(7), 4194–4201 (2017)CrossRefADSGoogle Scholar
  204. 204.
    Milosevic, A.M., Rodriguez-Lorenzo, L., Balog, S., Monnier, C.A., Petri-Fink, A., Rothen-Rutishauser, B.: Assessing the stability of fluorescently encoded nanoparticles in lysosomes by using complementary methods. Angew. Chem. Int. Ed. 56(43), 13382–13386 (2017)CrossRefGoogle Scholar
  205. 205.
    Dillon, J.C.K., Bezerra, L., del Pilar Sosa Peña, M., Neu-Baker, N.M., Brenner, S.A.: Hyperspectral data influenced by sample matrix: the importance of building relevant reference spectral libraries to map materials of interest. Microsc. Res. Tech. 80(5), 462–470 (2017)Google Scholar
  206. 206.
    Mühlfeld, C., Rothen-Rutishauser, B., Vanhecke, D., Blank, F., Gehr, P., Ochs, M.: Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part. Fibre Toxicol. 4(1), 11 (2007)CrossRefGoogle Scholar
  207. 207.
    Gundersen, H.J.G., Jensen, E.B.: The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147(3), 229–263 (1987)CrossRefGoogle Scholar
  208. 208.
    Slack, S.M., Horbett, T.A.: The Vroman effect. In: Proteins at Interfaces II, American Chemical Society, vol. 602, pp. 112–128 (1995)Google Scholar
  209. 209.
    Casals, E., Pfaller, T., Duschl, A., Oostingh, G.J., Puntes, V.: Time evolution of the nanoparticle protein corona. ACS Nano 4(7), 3623–3632 (2010)CrossRefGoogle Scholar
  210. 210.
    Vroman, L.: Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196, 476 (1962)CrossRefADSGoogle Scholar
  211. 211.
    Li, T., Senesi, A.J., Lee, B.: Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116(18), 11128–11180 (2016)CrossRefGoogle Scholar
  212. 212.
    Fong, W.K., Salentinig, S., Prestidge, C.A., Mezzenga, R., Hawley, A., Boyd, B.J.: Generation of geometrically ordered lipid-based liquid-crystalline nanoparticles using biologically relevant enzymatic processing. Langmuir 30(19), 5373–5377 (2014)CrossRefGoogle Scholar
  213. 213.
    Warren, D.B., Anby, M.U., Hawley, A., Boyd, B.J.: Real time evolution of liquid crystalline nanostructure during the digestion of formulation lipids using synchrotron small-angle X-ray scattering. Langmuir 27(15), 9528–9534 (2011)CrossRefGoogle Scholar
  214. 214.
    Hummer, A.A., Rompel, A.: The use of X-ray absorption and synchrotron based micro-X-ray fluorescence spectroscopy to investigate anti-cancer metal compounds in vivo and in vitro. Metallomics 5(6), 597–614 (2013)CrossRefGoogle Scholar
  215. 215.
    Wang, B., Feng, W., Chai, Z., Zhao, Y.: Probing the interaction at nano-bio interface using synchrotron radiation-based analytical techniques. Sci. China Chem. 58(5), 768–779 (2015)CrossRefGoogle Scholar
  216. 216.
    Ilinski, P., Lai, B., Cai, Z., Yun, W., Legnini, D., Talarico, T., Cholewa, M., Webster, L.K., Deacon, G.B., Rainone, S., Phillips, D.R., Stampfl, A.P.J.: The direct mapping of the uptake of platinum anticancer agents in individual human ovarian adenocarcinoma cells using a hard X-ray microprobe. Cancer Res. 63(8), 1776–1779 (2003)Google Scholar
  217. 217.
    Wang, B., Yin, J.-J., Zhou, X., Kurash, I., Chai, Z., Zhao, Y., Feng, W.: Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states. J. Phys. Chem. C 117(1), 383–392 (2013)CrossRefGoogle Scholar
  218. 218.
    Wang, L., Li, J., Pan, J., Jiang, X., Ji, Y., Li, Y., Qu, Y., Zhao, Y., Wu, X., Chen, C.: Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. JACS 135(46), 17359–17368 (2013)CrossRefGoogle Scholar
  219. 219.
    Zhong, J., Song, L., Meng, J., Gao, B., Chu, W., Xu, H., Luo, Y., Guo, J., Marcelli, A., Xie, S., Wu, Z.: Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47(4), 967–973 (2009)CrossRefGoogle Scholar
  220. 220.
    Robinson, I.: Nanoparticle structure by coherent X-ray diffraction. J. Phys. Soc. Jpn. 82(2), 021012 (2012)CrossRefADSGoogle Scholar
  221. 221.
    Li, X., Chiu, C.-Y., Wang, H.-J., Kassemeyer, S., Botha, S., Shoeman, R.L., Lawrence, R.M., Kupitz, C., Kirian, R., James, D., Wang, D., Nelson, G., Messerschmidt, M., Boutet, S., Williams, G.J., Hartmann, E., Jafarpour, A., Foucar, L.M., Barty, A., Chapman, H., Liang, M., Menzel, A., Wang, F., Basu, S., Fromme, R., Doak, R.B., Fromme, P., Weierstall, U., Huang, M.H., Spence, J.C.H., Schlichting, I., Hogue, B.G., Liu, H.: Diffraction data of core-shell nanoparticles from an X-ray free electron laser. Sci. Data 4, 170048 (2017)CrossRefGoogle Scholar
  222. 222.
    Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368 (2006)CrossRefADSGoogle Scholar
  223. 223.
    Song, Y., Hormes, J., Kumar, C.S.S.R.: Microfluidic synthesis of nanomaterials. Small 4(6), 698–711 (2008)CrossRefGoogle Scholar
  224. 224.
    Salafi, T., Zeming, K.K., Zhang, Y.: Advancements in microfluidics for nanoparticle separation. Lab Chip 17(1), 11–33 (2017)CrossRefGoogle Scholar
  225. 225.
    Valencia, P.M., Farokhzad, O.C., Karnik, R., Langer, R.: Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7(10), 623–629 (2012)CrossRefADSGoogle Scholar
  226. 226.
    Björnmalm, M., Yan, Y., Caruso, F.: Engineering and evaluating drug delivery particles in microfluidic devices. J. Contr. Release 190, 139–149 (2014)CrossRefGoogle Scholar
  227. 227.
    Lo Giudice, M.C., Herda, L.M., Polo, E., Dawson, K.A.: In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat. Commun. 7, 13475 (2016)CrossRefADSGoogle Scholar
  228. 228.
    Sun, J., Xianyu, Y., Jiang, X.: Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem. Soc. Rev. 43(17), 6239–6253 (2014)CrossRefGoogle Scholar
  229. 229.
    Fan, X., White, I.M.: Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591 (2011)CrossRefADSGoogle Scholar
  230. 230.
    Varghese, S.S., Zhu, Y., Davis, T.J., Trowell, S.C.: FRET for lab-on-a-chip devices—current trends and future prospects. Lab Chip 10(11), 1355–1364 (2010)CrossRefGoogle Scholar
  231. 231.
    Dannhauser, D., Romeo, G., Causa, F., De Santo, I., Netti, P.A.: Multiplex single particle analysis in microfluidics. Analyst 139(20), 5239–5246 (2014)CrossRefADSGoogle Scholar
  232. 232.
    Stehle, R., Goerigk, G., Wallacher, D., Ballauff, M., Seiffert, S.: Small-angle X-ray scattering in droplet-based microfluidics. Lab Chip 13(8), 1529–1537 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wye-Khay Fong
    • 1
  • Thomas L. Moore
    • 1
  • Sandor Balog
    • 1
  • Dimitri Vanhecke
    • 1
  • Laura Rodriguez-Lorenzo
    • 1
    • 2
  • Barbara Rothen-Rutishauser
    • 1
  • Marco Lattuada
    • 2
  • Alke Petri-Fink
    • 1
    • 3
    Email author
  1. 1.BioNanomaterials, Adolphe Merkle InstituteFribourgSwitzerland
  2. 2.International Iberian Nanotechnology LaboratoryWater Quality GroupBragaPortugal
  3. 3.Department of ChemistryUniversity of FribourgFribourgSwitzerland

Personalised recommendations