Advertisement

Polymeric Nanocarriers

  • Banu Iyisan
  • Katharina LandfesterEmail author
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Control over the nanoscopic scale opens nearly endless opportunities for many scientific areas. In particular, polymeric nanoparticles offer the versatility to cover a wide range of mesoscopic properties for sophisticated applications. However, making and applying smart nanoparticles is inevitably linked to a deep understanding of the overall physico-chemical principle of their formation and their interaction with their surroundings.

References

  1. 1.
    Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., Schué, F.: Terminology for biorelated polymers and applications (Iupac Recommendations 2012). Pure Appl. Chem. 84, 377 (2012)CrossRefGoogle Scholar
  2. 2.
    Landfester, K., Ramírez, L.P.: Encapsulated magnetite particles for biomedical application. J. Phys.: Condens. Matter 15, S1345 (2003)Google Scholar
  3. 3.
    Mailänder, V., Lorenz, M.R., Holzapfel, V., Musyanovych, A., Fuchs, K., Wiesneth, M., Walther, P., Landfester, K., Schrezenmeier, H.: Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol. Imag. Biol. 10, 138–146 (2008)CrossRefGoogle Scholar
  4. 4.
    Bannwarth, M.B., Ebert, S., Lauck, M., Ziener, U., Tomcin, S., Jakob, G., Münnemann, K., Mailänder, V., Musyanovych, A., Landfester, K.: Tailor-Made nanocontainers for combined magnetic-field-induced release and Mri. Macromol. Biosci. 14, 1205–1214 (2014)CrossRefGoogle Scholar
  5. 5.
    Kataoka, K., Harada, A., Nagasaki, Y.: Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001)CrossRefGoogle Scholar
  6. 6.
    Iijima, M., Nagasaki, Y., Okada, T., Kato, M., Kataoka, K.: Core-Polymerized reactive micelles from heterotelechelic amphiphilic block copolymers. Macromolecules 32, 1140–1146 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Kim, J.H., Emoto, K., Iijima, M., Nagasaki, Y., Aoyagi, T., Okano, T., Sakurai, Y., Kataoka, K.: Core-Stabilized polymeric micelle as potential drug carrier: increased solubilization of taxol. Polym. Adv. Technol. 10, 647–654 (1999)CrossRefGoogle Scholar
  8. 8.
    Buhleier, E., Wehner, W., Vögtle, F.: Synthesis 2, 155–158 (1978)CrossRefGoogle Scholar
  9. 9.
    Wörner, C., Mülhaupt, R.: Polynitrile- and polyamine-functional poly(Trimethylene Imine) dendrimers. Angew. Chem. Int. Edition Engl. 32, 1306–1308 (1993)CrossRefGoogle Scholar
  10. 10.
    Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., Smith, P.: A new class of polymers: starburst-dendritic macromolecules. Polym. J. 17, 117 (1985)CrossRefGoogle Scholar
  11. 11.
    Landfester, K.: Polyreactions in miniemulsions. Macromol. Rapid Commun. 22, 896–936 (2001)CrossRefGoogle Scholar
  12. 12.
    Ugelstad, J., El-Aasser, M.S., Vanderhoff, J.W.: Emulsion polymerization: initiation of polymerization in monomer droplets. J. Polym. Sci.: Polym. Lett. Edition 11, 503–513 (1973)ADSGoogle Scholar
  13. 13.
    Asua, J.M.: Miniemulsion Polymerization. Prog. Polym. Sci. 27, 1283–1346 (2002)CrossRefGoogle Scholar
  14. 14.
    Schork, F.J., Luo, Y., Smulders, W., Russum, J.P. Butte, A., Fontenot, K.: Miniemulsion polymerization. Adv. Polym. Sci. 175, 129–255 (2005)Google Scholar
  15. 15.
    Landfester, K.: Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chem. Int. Edition 48, 4488–4507 (2009)CrossRefGoogle Scholar
  16. 16.
    Barrère, M., Landfester, K.: High molecular weight polyurethane and polymer hybrid particles in aqueous miniemulsion. Macromolecules 36, 5119–5125 (2003)CrossRefADSGoogle Scholar
  17. 17.
    Barrère, M., Landfester, K.: Polyester synthesis in aqueous miniemulsion. Polymer 44, 2833–2841 (2003)CrossRefGoogle Scholar
  18. 18.
    Sawaryn, C., Landfester, K., Taden, A.: Benzoxazine miniemulsions stabilized with polymerizable nonionic benzoxazine surfactants. Macromolecules 43, 8933–8941 (2010)CrossRefADSGoogle Scholar
  19. 19.
    Landfester, K., Montenegro, R., Scherf, U., Güntner, R., Asawapirom, U., Patil, S., Neher, D., Kietzke, T.: Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv. Mater. 14, 651–655 (2002)CrossRefGoogle Scholar
  20. 20.
    Tiarks, F., Landfester, K., Antonietti, M.: Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17, 908–918 (2001)CrossRefGoogle Scholar
  21. 21.
    Landfester, K., Willert, M., Antonietti, M.: Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33, 2370–2376 (2000)CrossRefADSGoogle Scholar
  22. 22.
    Paiphansiri, U., Tangboriboonrat, P., Landfester, K.: Polymeric nanocapsules containing an antiseptic agent obtained by controlled nanoprecipitation onto water-in-oil miniemulsion droplets. Macromol. Biosci. 6, 33–40 (2006)CrossRefGoogle Scholar
  23. 23.
    Erdem, B., Sudol, E.D., Dimonie, V.L., El‐Aasser, M.S.: Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using Oloa 370 as stabilizer. J. Polym. Sci. Part A: Polym. Chem. 38, 4419–4430 (2000)Google Scholar
  24. 24.
    Erdem, B., Sudol, E.D., Dimonie, V.L., El‐Aasser, M.S.: Encapsulation of inorganic particles via miniemulsion polymerization. Ii. Preparation and characterization of styrene miniemulsion droplets containing Tio2 particles. J. Polym. Sci. Part A: Polym. Chem. 38, 4431–4440 (2000)Google Scholar
  25. 25.
    Erdem, B., Sudol, E.D., Dimonie, V.L., El‐Aasser, M.S.: Encapsulation of inorganic particles via miniemulsion polymerization. Iii. Characterization of encapsulation. J. Polym. Sci. Part A: Polym. Chem. 38, 4441–4450 (2000)Google Scholar
  26. 26.
    Tiarks, F., Landfester, K., Antonietti, M.: Encapsulation of carbon black by miniemulsion polymerization. Macromol. Chem. Phys. 202, 51–60 (2001)CrossRefGoogle Scholar
  27. 27.
    Steiert, N., Landfester, K.: Encapsulation of organic pigment particles via miniemulsion polymerization. Macromol. Mater. Eng. 292, 1111–1125 (2007)CrossRefGoogle Scholar
  28. 28.
    Hofmeister, I., Landfester, K., Taden, A.: Controlled formation of polymer nanocapsules with high diffusion-barrier properties and prediction of encapsulation efficiency. Angew. Chem. Int. Edition 54, 327–330 (2015)CrossRefGoogle Scholar
  29. 29.
    Jagielski, N., Sharma, S., Hombach, V., Mailänder, V., Rasche, V., Landfester, K.: Nanocapsules synthesized by miniemulsion technique for application as new contrast agent materials. Macromol. Chem. Phys. 208, 2229–2241 (2007)CrossRefGoogle Scholar
  30. 30.
    Malzahn, K., Ebert, S., Schlegel, I., Neudert, O., Wagner, M., Schütz, G., Ide, A., Roohi, F., Münnemann, K., Crespy, D., Landfester, K.: Design and control of nanoconfinement to achieve magnetic resonance contrast agents with high relaxivity. Adv. Healthc. Mater. 5, 567–574 (2016)CrossRefGoogle Scholar
  31. 31.
    Schlegel, I., Renz, P., Simon, J., Lieberwirth, I., Pektor, S., Bausbacher, N., Miederer, M., Mailänder, V., Muñoz-Espí, R., Crespy, D., Landfester, K.: Highly loaded semipermeable nanocapsules for magnetic resonance imaging. Macromol. Biosci. 18, 1700387 (2018)CrossRefGoogle Scholar
  32. 32.
    Andrieu, J., Kotman, N., Maier, M., Mailänder, V., Strauss, W.S.L., Weiss, C.K., Landfester, K.: Live monitoring of cargo release from peptide-based hybrid nanocapsules induced by enzyme cleavage. Macromol. Rapid Commun. 33, 248–253 (2012)CrossRefGoogle Scholar
  33. 33.
    Dundua, A., Landfester, K., Taden, A.: Water-Based adhesives with tailored hydrophobic association: dilution resistance and improved setting behavior. Macromol. Rapid Commun. 35, 1872–1878 (2014)Google Scholar
  34. 34.
    Rausch, K., Reuter, A., Fischer, K., Schmidt, M.: Evaluation of nanoparticle aggregation in human blood serum. Biomacromol 11, 2836–2839 (2010)CrossRefGoogle Scholar
  35. 35.
    Wohnhaas, C., Friedemann, K., Busko, D., Landfester, K., Baluschev, S., Crespy, D., Turshatov, A.: All organic nanofibers as ultralight versatile support for triplet-triplet annihilation upconversion. ACS Macro Lett. 2, 446–450 (2013)CrossRefGoogle Scholar
  36. 36.
    Musyanovych, A., Schmitz-Wienke, J., Mailänder, V., Walther, P., Landfester, K.: Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions. Macromol. Biosci. 8, 127–139 (2008)CrossRefGoogle Scholar
  37. 37.
    Wohnhaas, C., Mailänder, V., Dröge, M., Filatov, M.A., Busko, D., Avlasevich, Y., Baluschev, S., Miteva, T., Landfester, K., Turshatov, A.: Triplet-Triplet annihilation upconversion based nanocapsules for bioimaging under excitation by red and deep-red light. Macromol. Biosci. 13, 1422–1430 (2013)CrossRefGoogle Scholar
  38. 38.
    Liu, Q., Yin, B., Yang, T., Yang, Y., Shen, Z., Yao, P., Li, F.: A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. J. Am. Chem. Soc. 135, 5029–5037 (2013)CrossRefGoogle Scholar
  39. 39.
    Cui, J., van Koeverden, M.P., Müllner, M., Kempe, K., Caruso, F.: Emerging methods for the fabrication of polymer capsules. Adv. Colloid Interface Sci. 207, 14–31 (2014)CrossRefGoogle Scholar
  40. 40.
    Gaitzsch, J., Huang, X., Voit, B.: Engineering functional polymer capsules toward smart nanoreactors. Chem. Rev. 116, 1053–1093 (2016)CrossRefGoogle Scholar
  41. 41.
    Parakhonskiy, B.V., Yashchenok, A.M., Konrad, M., Skirtach, A.G.: Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules. Adv. Colloid Interface Sci. 207, 253–264 (2014)CrossRefGoogle Scholar
  42. 42.
    del Mercato, L.L., Ferraro, M.M., Baldassarre, F., Mancarella, S., Greco, V., Rinaldi, R., Leporatti, S.: Biological applications of Lbl multilayer capsules: from drug delivery to sensing. Adv. Colloid Interface Sci. 207, 139–154 (2014)CrossRefGoogle Scholar
  43. 43.
    Liu, X., Appelhans, D., Wei, Q., Voit, B.: Photo-Cross-Linked dual-responsive hollow capsules mimicking cell membrane for controllable cargo post-encapsulation and release. Adv. Sci. 4, 1600308 (2017)CrossRefGoogle Scholar
  44. 44.
    Liu, X., Formanek, P., Voit, B., Appelhans, D.: Functional cellular mimics for the spatiotemporal control of multiple enzymatic cascade reactions. Angew. Chem. 129, 16451–16456 (2017)CrossRefGoogle Scholar
  45. 45.
    Morinaga, T., Ohkura, M., Ohno, K., Tsujii, Y., Fukuda, T.: Monodisperse silica particles grafted with concentrated oxetane-carrying polymer brushes: their synthesis by surface-initiated atom transfer radical polymerization and use for fabrication of hollow spheres. Macromolecules 40, 1159–1164 (2007)CrossRefADSGoogle Scholar
  46. 46.
    Huang, X., Appelhans, D., Formanek, P., Simon, F., Voit, B.: Synthesis of well-defined photo-cross-linked polymeric nanocapsules by surface-initiated raft polymerization. Macromolecules 44, 8351–8360 (2011)CrossRefADSGoogle Scholar
  47. 47.
    Blomberg, S., Ostberg, S., Harth, E., Bosman, A.W., Horn, B.V., Hawker, C.J.: Production of crosslinked, hollow nanoparticles by surface‐initiated living free‐radical polymerization. J. Polym. Sci. Part A: Polym. Chem. 40, 1309–1320 (2002)Google Scholar
  48. 48.
    Discher, B.M., Won, Y.-Y., Ege, D.S., Lee, J.C.-M., Bates, F.S., Discher, D.E., Hammer, D.A.: Polymersomes: tough vesicles made from diblock copolymers. Science 284, 1143–1146 (1999)CrossRefADSGoogle Scholar
  49. 49.
    Hillmyer, M.A., Bates, F.S.: Synthesis and characterization of model Polyalkane–Poly(Ethylene Oxide) block copolymers. Macromolecules 29, 6994–7002 (1996)CrossRefADSGoogle Scholar
  50. 50.
    Hillmyer, M.A., Bates, F.S., Almdal, K., Mortensen, K., Ryan, A.J., Fairclough, J.P.A.: Complex phase behavior in solvent-free nonionic surfactants. Science 271, 976–978 (1996)CrossRefADSGoogle Scholar
  51. 51.
    Siegwart, D.J., Oh, J.K., Matyjaszewski, K.: Atrp in the design of functional materials for biomedical applications. Prog. Polym. Sci. 37, 18–37 (2012)CrossRefGoogle Scholar
  52. 52.
    Braunecker, W.A., Matyjaszewski, K.: Controlled/Living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 32, 93–146 (2007)CrossRefGoogle Scholar
  53. 53.
    Antonietti, M., Förster, S.: Vesicles and liposomes: a self-assembly principle beyond lipids. Adv. Mater. 15, 1323–1333 (2003)CrossRefGoogle Scholar
  54. 54.
    Israelachvili, J.N., Mitchell, D.J., Ninham, B.W.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 72, 1525–1568 (1976)Google Scholar
  55. 55.
    Zhang, J., Li, X., Li, X.: Stimuli-Triggered structural engineering of synthetic and biological polymeric assemblies. Prog. Polym. Sci. 37, 1130–1176 (2012)CrossRefGoogle Scholar
  56. 56.
    Discher, D.E., Eisenberg, A.: Polym. Vesicles. Science 297, 967–973 (2002)CrossRefADSGoogle Scholar
  57. 57.
    Le Meins, J.F., Sandre, O., Lecommandoux, S.: Recent trends in the tuning of polymersomes’ membrane properties. Eur. Phys. J. E 34, 1–17 (2011)CrossRefGoogle Scholar
  58. 58.
    Lee, J.S., Feijen, J.: Polymersomes for drug delivery: design, formation and characterization. J. Control. Release 161, 473–483 (2012)CrossRefGoogle Scholar
  59. 59.
    Balasubramanian, V., Herranz-Blanco, B., Almeida, P.V., Hirvonen, J., Santos, H.A.: Multifaceted polymersome platforms: spanning from self-assembly to drug delivery and protocells. Prog. Polym. Sci. 60, 51–85 (2016)CrossRefGoogle Scholar
  60. 60.
    Yu, Y., Eisenberg, A.: Control of morphology through polymer–solvent interactions in crew-cut aggregates of amphiphilic block copolymers. J. Am. Chem. Soc. 119, 8383–8384 (1997)CrossRefGoogle Scholar
  61. 61.
    Zhang, L., Eisenberg, A.: Morphogenic effect of added ions on crew-cut aggregates of Polystyrene-B-Poly(Acrylic Acid) block copolymers in solutions. Macromolecules 29, 8805–8815 (1996)CrossRefADSGoogle Scholar
  62. 62.
    Kita-Tokarczyk, K., Grumelard, J., Haefele, T., Meier, W.: Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer 46, 3540–3563 (2005)CrossRefGoogle Scholar
  63. 63.
    Zhang, L., Eisenberg, A.: Multiple morphologies and characteristics of “Crew-Cut” Micelle-Like aggregates of Polystyrene-B-Poly(Acrylic Acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc. 118, 3168–3181 (1996)CrossRefGoogle Scholar
  64. 64.
    Won, Y.-Y., Davis, H.T., Bates, F.S.: Giant wormlike rubber micelles. Science 283, 960–963 (1999)CrossRefADSGoogle Scholar
  65. 65.
    Meng, F., Hiemstra, C., Engbers, G.H.M., Feijen, J.: Biodegradable polymersomes. Macromolecules 36, 3004–3006 (2003)CrossRefADSGoogle Scholar
  66. 66.
    Egli, S., Nussbaumer, M.G., Balasubramanian, V., Chami, M., Bruns, N., Palivan, C., Meier, W.: Biocompatible functionalization of polymersome surfaces: a new approach to surface immobilization and cell targeting using polymersomes. J. Am. Chem. Soc. 133, 4476–4483 (2011)CrossRefGoogle Scholar
  67. 67.
    Dimitrov, D.S., Angelova, M.I.: Lipid swelling and liposome formation on solid surfaces in external electric fields. In: Hoffmann, H. (ed.) New Trends in Colloid Science, Darmstadt, vol. 1987, pp 48–56. Steinkopff, Darmstadt (1987)Google Scholar
  68. 68.
    Bucher, P., Fischer, A., Luisi, P.L., Oberholzer, T., Walde, P.: Giant vesicles as biochemical compartments: the use of microinjection techniques. Langmuir 14, 2712–2721 (1998)CrossRefGoogle Scholar
  69. 69.
    Sauer, M., Haefele, T., Graff, A., Nardin, C., Meier, W.: Ion-Carrier controlled precipitation of calcium phosphate in giant aba triblock copolymer vesicles. Chem. Commun. 2452–2453 (2001)Google Scholar
  70. 70.
    Shum, H.C., Kim, J.-W., Weitz, D.A.: Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J. Am. Chem. Soc. 130, 9543–9549 (2008)CrossRefGoogle Scholar
  71. 71.
    Perro, A., Nicolet, C., Angly, J., Lecommandoux, S., Le Meins, J.-F., Colin, A.: Mastering a double emulsion in a simple co-flow microfluidic to generate complex polymersomes. Langmuir 27, 9034–9042 (2011)CrossRefGoogle Scholar
  72. 72.
    Thiele, J., Steinhauser, D., Pfohl, T., Förster, S.: Preparation of monodisperse block copolymer vesicles via flow focusing in microfluidics. Langmuir 26, 6860–6863 (2010)CrossRefGoogle Scholar
  73. 73.
    Brown, L., McArthur, S.L., Wright, P.C., Lewis, A., Battaglia, G.: Polymersome production on a microfluidic platform using ph sensitive block copolymers. Lab Chip 10, 1922–1928 (2010)CrossRefGoogle Scholar
  74. 74.
    Du, J., Armes, S.P.: Preparation of primary amine-based block copolymer vesicles by direct dissolution in water and subsequent stabilization by Sol–Gel Chemistry. Langmuir 24, 13710–13716 (2008)CrossRefGoogle Scholar
  75. 75.
    Du, J., Armes, S.P.: Preparation of biocompatible zwitterionic block copolymer vesicles by direct dissolution in water and subsequent silicification within their membranes. Langmuir 25, 9564–9570 (2009)CrossRefGoogle Scholar
  76. 76.
    Iyisan, B., Kluge, J., Formanek, P., Voit, B., Appelhans, D.: Multifunctional and dual-responsive polymersomes as robust nanocontainers: design, formation by sequential post-conjugations, and ph-controlled drug release. Chem. Mater. 28, 1513–1525 (2016)CrossRefGoogle Scholar
  77. 77.
    Yassin, M.A., Appelhans, D., Wiedemuth, R., Formanek, P., Boye, S., Lederer, A., Temme, A., Voit, B.: Overcoming concealment effects of targeting moieties in the peg corona: controlled permeable polymersomes decorated with folate-antennae for selective targeting of tumor cells. Small 11, 1580–1591 (2015)CrossRefGoogle Scholar
  78. 78.
    Iyisan, B., Janke, A., Reichenbach, P., Eng, L.M., Appelhans, D., Voit, B.: Immobilized multifunctional polymersomes on solid surfaces: infrared light-induced selective photochemical reactions, ph responsive behavior, and probing mechanical properties under liquid phase. ACS Appl. Mater. Interfaces 8, 15788–15801 (2016)CrossRefGoogle Scholar
  79. 79.
    Gaitzsch, J., Appelhans, D., Wang, L., Battaglia, G., Voit, B.: Synthetic Bio-Nanoreactor: mechanical and chemical control of polymersome membrane permeability. Angew. Chem. Int. Edition 51, 4448–4451 (2012)CrossRefGoogle Scholar
  80. 80.
    Grafe, D., Gaitzsch, J., Appelhans, D., Voit, B.: Cross-linked polymersomes as nanoreactors for controlled and stabilized single and cascade enzymatic reactions. Nanoscale 6, 10752–10761 (2014)CrossRefADSGoogle Scholar
  81. 81.
    Hawker, C.J., Frechet, J.M.J.: Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638–7647 (1990)Google Scholar
  82. 82.
    Voit, B., Haag, R., Appelhans, D., Welzel, P.B.: Bio‐ and Multifunctional Polymer Architectures. Wiley (2016)Google Scholar
  83. 83.
    Landfester, K., Mailänder, V.: Nanocapsules with specific targeting and release properties using miniemulsion polymerization. Expert Opin. Drug. Deliv. 10, 593–609 (2013)CrossRefGoogle Scholar
  84. 84.
    Zhao, Y., Lv, L.-P., Jiang, S., Landfester, K., Crespy, D.: Advanced stimuli-responsive polymer nanocapsules with enhanced capabilities for payloads delivery. Polym. Chem. 6, 4197–4205 (2015)CrossRefGoogle Scholar
  85. 85.
    Che, H., van Hest, J.C.M.: Stimuli-Responsive polymersomes and nanoreactors. J. Mater. Chem. B 4, 4632–4647 (2016)CrossRefGoogle Scholar
  86. 86.
    Casasús, R., Marcos, M.D., Martínez-Máñez, R., Ros-Lis, J.V., Soto, J., Villaescusa, L.A., Amorós, P., Beltrán, D., Guillem, C., Latorre, J.: Toward the development of ionically controlled nanoscopic molecular gates. J. Am. Chem. Soc. 126, 8612–8613 (2004)CrossRefGoogle Scholar
  87. 87.
    Casasús, R., Climent, E., Marcos, M.D., Martínez-Máñez, R., Sancenón, F., Soto, J., Amorós, P., Cano, J., Ruiz, E.: Dual aperture control on ph- and anion-driven supramolecular nanoscopic hybrid gate-like ensembles. J. Am. Chem. Soc. 130, 1903–1917 (2008)CrossRefGoogle Scholar
  88. 88.
    Park, C., Oh, K., Lee, S.C., Kim, C.: Controlled release of guest molecules from mesoporous silica particles based on a ph-responsive polypseudorotaxane motif. Angew. Chem. Int. Edition 46, 1455–1457 (2007)CrossRefGoogle Scholar
  89. 89.
    Angelos, S., Yang, Y.-W., Patel, K., Stoddart, J.F., Zink, J.I.: Ph-Responsive supramolecular nanovalves based on cucurbit [6] uril pseudorotaxanes. Angew. Chem. 120, 2254–2258 (2008)CrossRefGoogle Scholar
  90. 90.
    Zhang, Q., Ariga, K., Okabe, A., Aida, T.: A condensable amphiphile with a cleavable tail as a “Lizard” template for the Sol−Gel synthesis of functionalized mesoporous silica. J. Am. Chem. Soc. 126, 988–989 (2004)CrossRefGoogle Scholar
  91. 91.
    Schlossbauer, A., Dohmen, C., Schaffert, D., Wagner, E., Bein, T.: Ph-Responsive release of acetal-linked melittin from Sba-15 mesoporous silica. Angew. Chem. Int. Edition 50, 6828–6830 (2011)CrossRefGoogle Scholar
  92. 92.
    Liu, R., Zhang, Y., Zhao, X., Agarwal, A., Mueller, L.J., Feng, P.: Ph-Responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc. 132, 1500–1501 (2010)CrossRefGoogle Scholar
  93. 93.
    Aznar, E., Marcos, M.D., Martínez-Máñez, R., Sancenón, F., Soto, J., Amorós, P., Guillem, C.: Ph- and photo-switched release of guest molecules from mesoporous silica supports. J. Am. Chem. Soc. 131, 6833–6843 (2009)CrossRefGoogle Scholar
  94. 94.
    Muhammad, F., Guo, M., Qi, W., Sun, F., Wang, A., Guo, Y., Zhu, G.: Ph-Triggered controlled drug release from mesoporous silica nanoparticles via intracellular dissolution of zno nanolids. J. Am. Chem. Soc. 133, 8778–8781 (2011)CrossRefGoogle Scholar
  95. 95.
    Riedinger, A., Guardia, P., Curcio, A., Garcia, M.A., Cingolani, R., Manna, L., Pellegrino, T.: Subnanometer local temperature probing and remotely controlled drug release based on Azo-Functionalized iron oxide nanoparticles. Nano Lett. 13, 2399–2406 (2013)CrossRefADSGoogle Scholar
  96. 96.
    McClure, J.H., Robertson, R.E., Cuthbertson, A.C.: The decomposition of benzoyl peroxide in benzene. Can. J. Res. 20b, 103–113 (1942)Google Scholar
  97. 97.
    Thomas, C.R., Ferris, D.P., Lee, J.-H., Choi, E., Cho, M.H., Kim, E.S., Stoddart, J.F., Shin, J.-S., Cheon, J., Zink, J.I.: Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J. Am. Chem. Soc. 132, 10623–10625 (2010)CrossRefGoogle Scholar
  98. 98.
    Aznar, E., Mondragón, L., Ros-Lis, J.V., Sancenón, F., Marcos, M.D., Martínez-Máñez, R., Soto, J., Pérez-Payá, E., Amorós, P.: Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles. Angew. Chem. Int. Edition 50, 11172–11175 (2011)CrossRefGoogle Scholar
  99. 99.
    Zhang, J., Misra, R.D.K.: Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater. 3, 838–850 (2007)CrossRefGoogle Scholar
  100. 100.
    Wolf, T., Rheinberger, T., Simon, J., Wurm, F.R.: Reversible self-assembly of degradable polymersomes with upper critical solution temperature in water. J. Am. Chem. Soc. 139, 11064–11072 (2017)CrossRefGoogle Scholar
  101. 101.
    Ferris, D.P., Zhao, Y.-L., Khashab, N.M., Khatib, H.A., Stoddart, J.F., Zink, J.I.: Light-Operated mechanized nanoparticles. J. Am. Chem. Soc. 131, 1686–1688 (2009)CrossRefGoogle Scholar
  102. 102.
    Mal, N.K., Fujiwara, M., Tanaka, Y.: Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421, 350–353 (2003)CrossRefADSGoogle Scholar
  103. 103.
    Fujiwara, M., Terashima, S., Endo, Y., Shiokawa, K., Ohue, H.: Switching catalytic reaction conducted in pore void of mesoporous material by redox gate control. Chem. Commun. 4635–4637 (2006)Google Scholar
  104. 104.
    Lai, C.-Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S., Lin, V.S.Y.: A mesoporous silica nanosphere-based carrier system with chemically removable cds nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125, 4451–4459 (2003)CrossRefGoogle Scholar
  105. 105.
    Behzadi, S., Steinmann, M., Estupiñán, D., Landfester, K., Crespy, D.: The pro-active payload strategy significantly increases selective release from mesoporous nanocapsules. J. Control. Release 242, 119–125 (2016)CrossRefGoogle Scholar
  106. 106.
    Staff, R.H., Gallei, M., Mazurowski, M., Rehahn, M., Berger, R., Landfester, K., Crespy, D.: Patchy nanocapsules of Poly(Vinylferrocene)-Based block copolymers for redox-responsive release. ACS Nano 6, 9042–9049 (2012)CrossRefGoogle Scholar
  107. 107.
    Lv, L.-P., Zhao, Y., Vilbrandt, N., Gallei, M., Vimalanandan, A., Rohwerder, M., Landfester, K., Crespy, D.: Redox responsive release of hydrophobic self-healing agents from polyaniline capsules. J. Am. Chem. Soc. 135, 14198–14205 (2013)CrossRefGoogle Scholar
  108. 108.
    Hernandez, R., Tseng, H.-R., Wong, J.W., Stoddart, J.F., Zink, J.I.: An operational supramolecular nanovalve. J. Am. Chem. Soc. 126, 3370–3371 (2004)CrossRefGoogle Scholar
  109. 109.
    Schlossbauer, A., Kecht, J., Bein, T.: Biotin-Avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. Angew. Chem. Int. Edition 48, 3092–3095 (2009)CrossRefGoogle Scholar
  110. 110.
    Piradashvili, K., Fichter, M., Mohr, K., Gehring, S., Wurm, F.R., Landfester, K.: Biodegradable protein nanocontainers. Biomacromol 16, 815–821 (2015)CrossRefGoogle Scholar
  111. 111.
    Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M.D., Martínez-Máñez, R., Sancenón, F., Soto, J., Pérez-Payá, E., Amorós, P.: Dual enzyme-triggered controlled release on capped nanometric silica mesoporous supports. ChemistryOpen 1, 17–20 (2012)CrossRefGoogle Scholar
  112. 112.
    Fuchs, A.V., Kotman, N., Andrieu, J., Mailander, V., Weiss, C.K., Landfester, K.: Enzyme cleavable nanoparticles from peptide based triblock copolymers. Nanoscale 5, 4829–4839 (2013)CrossRefADSGoogle Scholar
  113. 113.
    Baier, G., Cavallaro, A., Vasilev, K., Mailänder, V., Musyanovych, A., Landfester, K.: Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromol 14, 1103–1112 (2013)CrossRefGoogle Scholar
  114. 114.
    Brož, P., Benito, S.M., Saw, C., Burger, P., Heider, H., Pfisterer, M., Marsch, S., Meier, W., Hunziker, P.: Cell Targeting by a generic receptor-targeted polymer nanocontainer platform. J. Control. Release 102, 475–488 (2005)CrossRefGoogle Scholar
  115. 115.
    Rigler, P., Meier, W.: Encapsulation of fluorescent molecules by functionalized polymeric nanocontainers: investigation by confocal fluorescence imaging and fluorescence correlation spectroscopy. J. Am. Chem. Soc. 128, 367–373 (2006)CrossRefGoogle Scholar
  116. 116.
    Iyisan, B., Siedel, A.C., Gumz, H., Yassin, M., Kluge, J., Gaitzsch, J., Formanek, P., Moreno, S., Voit, B., Appelhans, D.: Dynamic docking and undocking processes addressing selectively the outside and inside of polymersomes. Macromol. Rapid Commun. 38, 1700486 (2017)CrossRefGoogle Scholar
  117. 117.
    Musyanovych, A., Rossmanith, R., Tontsch, C., Landfester, K.: Effect of hydrophilic comonomer and surfactant type on the colloidal stability and size distribution of carboxyl- and amino-functionalized polystyrene particles prepared by miniemulsion polymerization. Langmuir 23, 5367–5376 (2007)CrossRefGoogle Scholar
  118. 118.
    Simon, J., Wolf, T., Klein, K., Landfester, K., Wurm, F.R., Mailänder, V.: Hydrophilicity regulates the stealth properties of polyphosphoester-coated nanocarriers. Angew. Chem. Int. Edition 57, 5548–5553 (2018)CrossRefGoogle Scholar
  119. 119.
    Baier, G., Baumann, D., Siebert, J.M., Musyanovych, A., Mailänder, V., Landfester, K.: Suppressing unspecific cell uptake for targeted delivery using hydroxyethyl starch nanocapsules. Biomacromol 13, 2704–2715 (2012)CrossRefGoogle Scholar
  120. 120.
    Freichels, H., Wagner, M., Okwieka, P., Meyer, R.G., Mailander, V., Landfester, K., Musyanovych, A.: (Oligo)Mannose functionalized hydroxyethyl starch nanocapsules: en route to drug delivery systems with targeting properties. J. Mater. Chem. B 1, 4338–4348 (2013)CrossRefGoogle Scholar
  121. 121.
    Bijlard, A.C., Wald, S., Crespy, D., Taden, A., Wurm, F.R., Landfester, K.: Functional Colloidal Stabilization. Adv. Mater. Interfaces 4, 1600443 (2017)CrossRefGoogle Scholar
  122. 122.
    Hallett, F.R., Watton, J., Krygsman, P.: Vesicle sizing: number distributions by dynamic light scattering. Biophys. J. 59, 357–362 (1991)CrossRefGoogle Scholar
  123. 123.
    Pencer, J., Hallett, F.R.: Effects of vesicle size and shape on static and dynamic light scattering measurements. Langmuir 19, 7488–7497 (2003)CrossRefGoogle Scholar
  124. 124.
    Pecora, R.: Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res. 2, 123–131 (2000)CrossRefADSGoogle Scholar
  125. 125.
    Schärtl, W.: Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Springer Science & Business Media (2007)Google Scholar
  126. 126.
    Williams, D.B., Carter, C.B: Transmission Electron Microscopy, pp. 3–17. Springer, Boston, MA, (1996)Google Scholar
  127. 127.
    Möckl, L., Lamb, D.C., Bräuchle, C.: Super-Resolved fluorescence microscopy: nobel prize in chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angew. Chem. Int. Edition 53, 13972–13977 (2014)CrossRefGoogle Scholar
  128. 128.
    Jaskiewicz, K., Makowski, M., Kappl, M., Landfester, K., Kroeger, A.: Mechanical properties of Poly(Dimethylsiloxane)-Block-Poly(2-Methyloxazoline) polymersomes probed by atomic force microscopy. Langmuir 28, 12629–12636 (2012)CrossRefGoogle Scholar
  129. 129.
    Delorme, N., Fery, A.: Direct method to study membrane rigidity of small vesicles based on atomic force microscope force spectroscopy. Phys. Rev. E 74, 030901 (2006)CrossRefADSGoogle Scholar
  130. 130.
    Li, S., Palmer, A.F.: Structure and mechanical response of Self-Assembled Poly(Butadiene)-B-Poly(Ethylene Oxide) colloids probed by atomic force microscopy. Macromolecules 38, 5686–5698 (2005)CrossRefADSGoogle Scholar
  131. 131.
    Fery, A., Weinkamer, R.: Mechanical properties of micro- and nanocapsules: single-capsule measurements. Polymer 48, 7221–7235 (2007)CrossRefGoogle Scholar
  132. 132.
    Shan, Y., Wang, H.: The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem. Soc. Rev. 44, 3617–3638 (2015)CrossRefGoogle Scholar
  133. 133.
    Leggett, G.J.: pp. 470–562. Wiley (2009)Google Scholar
  134. 134.
    Alsteens, D., Dupres, V., Yunus, S., Latgé, J.-P., Heinisch, J.J., Dufrêne, Y.F.: High-Resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir 28, 16738–16744 (2012)CrossRefGoogle Scholar
  135. 135.
    Heu, C., Berquand, A., Elie-Caille, C., Nicod, L.: Glyphosate-Induced stiffening of hacat keratinocytes, a peak force tapping study on living cells. J. Struct. Biol. 178, 1–7 (2012)CrossRefGoogle Scholar
  136. 136.
    Hertz, H.: On the contact of elastic solids. Z. Reine Angew. Mathematik 92, 156–171 (1881)zbMATHGoogle Scholar
  137. 137.
    Taber, L.A.: Large deflection of a fluid-filled spherical shell under a point load. J. Appl. Mech. 49, 121–128 (1982)CrossRefADSzbMATHGoogle Scholar
  138. 138.
    Averett, L.E., Schoenfisch, M.H.: Atomic force microscope studies of fibrinogen adsorption. Analyst 135, 1201–1209 (2010)CrossRefADSGoogle Scholar
  139. 139.
    Schmitz, K.S.: Introduction to Dynamic Light Scattering by Macromolecules, pp. 319–376. Academic Press, Oxford (1990)CrossRefGoogle Scholar
  140. 140.
    Nahire, R., Haldar, M.K., Paul, S., Ambre, A.H., Meghnani, V., Layek, B., Katti, K.S., Gange, K.N., Singh, J., Sarkar, K., Mallik, S.: Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials 35, 6482–6497 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations