Advertisement

Interactions of Nanoparticles with Skin

  • Fanny Knorr
  • Alexa Patzelt
  • Martina Claudia Meinke
  • Anika Vogt
  • Ulrike Blume-Peytavi
  • Eckart Rühl
  • Jürgen LademannEmail author
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The interactions of nanoparticles with skin and skin cells are complex and depend on the nanoparticle type. The present work provides an overview on the interactions between solid nanoparticles including silica, titanium dioxide, and silver particulates and skin and skin cells on the basis of previous research results. Generally, nanoparticles applied to skin tend to remain on the skin surface and penetrate only into the upper layers of the stratum corneum and the follicular ducts. In very few cases, nanoparticles have been found in deeper skin layers, particularly if the skin barrier was previously disrupted. Increased nanoparticle penetration may result in biologically relevant effects, e.g. cytotoxic cellular effects induced by silver ions released from wound dressings incorporating silver nanoparticles.

Notes

Acknowledgements

We thankfully acknowledge the Deutsche Forschungsgemeinschaft for their support of the Priority Program SPP 1313 “Biological Responses to Nanoscale Particles”.

References

  1. 1.
    Menon, G.K., Kligman, A.M.: Barrier functions of human skin: a holistic view. Skin Pharmacol. Physiol. 22(4), 178–189 (2009)CrossRefGoogle Scholar
  2. 2.
    Hadgraft, J., Lane, M.E.: Advanced topical formulations (ATF). Int. J. Pharm. 514(1), 52–57 (2016)CrossRefGoogle Scholar
  3. 3.
    Patzelt, A., Lademann, J.: Drug delivery to hair follicles. Expert Opin. Drug Deliv. 10(6), 787–797 (2013)CrossRefGoogle Scholar
  4. 4.
    Albery, W.J., Hadgraft, J.: Percutaneous absorption: in vivo experiments. J. Pharm. Pharmacol. 31(3), 140–147 (1979)CrossRefGoogle Scholar
  5. 5.
    Barbero, A.M., Frasch, H.F.: Transcellular route of diffusion through stratum corneum: results from finite element models. J. Pharm. Sci. 95(10), 2186–2194 (2006)CrossRefGoogle Scholar
  6. 6.
    Sznitowska, M., Janicki, S., Williams, A.C.: Intracellular or intercellular localization of the polar pathway of penetration across stratum corneum. J. Pharm. Sci. 87(9), 1109–1114 (1998)CrossRefGoogle Scholar
  7. 7.
    Patzelt, A., et al.: Selective follicular targeting by modification of the particle sizes. J. Control. Release 150(1), 45–48 (2011)CrossRefGoogle Scholar
  8. 8.
    Toll, R., et al.: Penetration profile of microspheres in follicular targeting of terminal hair follicles. J. Invest. Dermatol. 123(1), 168–176 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lademann, J., et al.: Drug delivery with topically applied nanoparticles: science fiction or reality. Skin Pharmacol. Physiol. 26(4–6), 227–233 (2013)CrossRefGoogle Scholar
  10. 10.
    Napierska, D., et al.: The nanosilica hazard: another variable entity. Part. Fibre Toxicol. 7(1), 39 (2010)CrossRefGoogle Scholar
  11. 11.
    Shvedova, A.A., Kagan, V.E., Fadeel, B.: Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu. Rev. Pharmacol. Toxicol. 50, 63–88 (2010)CrossRefGoogle Scholar
  12. 12.
    Cevc, G., Schätzlein, A., Richardsen, H.: Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta 1564(1), 21–30 (2002)Google Scholar
  13. 13.
    Schätzlein, A., Cevc, G.: Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (Transfersomes). Br. J. Dermatol. 138(4), 583–592 (1998)CrossRefGoogle Scholar
  14. 14.
    Lademann, J., et al.: Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol. Appl. Skin Physiol. 12(5), 247–256 (1999)CrossRefGoogle Scholar
  15. 15.
    Sadrieh, N., et al.: Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol. Sci. 115(1), 156–166 (2010)CrossRefGoogle Scholar
  16. 16.
    Lademann, J., et al.: Hair follicles—a long-term reservoir for drug delivery. Skin Pharmacol. Physiol. 19(4), 232–236 (2006)CrossRefGoogle Scholar
  17. 17.
    Graf, C., et al.: Qualitative detection of single submicron and nanoparticles in human skin by scanning transmission X-ray microscopy. J. Biomed. Opt. 14(2), 021015 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Larese, F.F., et al.: Human skin penetration of cobalt nanoparticles through intact and damaged skin. Toxicol. In Vitro 27, 121–127 (2013)CrossRefGoogle Scholar
  19. 19.
    Baroli, B., et al.: Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol. 127(7), 1701–1712 (2007)CrossRefGoogle Scholar
  20. 20.
    Vogt, A., et al.: 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J. Invest. Dermatol. 126(6), 1316–1322 (2006)CrossRefGoogle Scholar
  21. 21.
    Mahe, B., et al.: Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J. Invest. Dermatol. 129(5), 1156–1164 (2009)CrossRefGoogle Scholar
  22. 22.
    Mortensen, L.J., et al.: In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 8(9), 2779–2787 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Kubo, A., et al.: External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206(13), 2937–2946 (2009)CrossRefGoogle Scholar
  24. 24.
    Rancan, F., et al.: Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano 6(8), 6829–6842 (2012)CrossRefGoogle Scholar
  25. 25.
    Wang, L., Zhao, W., Tan, W.: Bioconjugated silica nanoparticles: development and applications. Nano Res 1, 99–115 (2008)CrossRefGoogle Scholar
  26. 26.
    Abdel-Mottaleb, M.M., et al.: Surface-charge-dependent nanoparticles accumulation in inflamed skin. J. Pharm. Sci. 101(11), 4231–4239 (2012)CrossRefGoogle Scholar
  27. 27.
    Bennett, S.W., et al.: Photoinduced disaggregation of TiO(2) nanoparticles enables transdermal penetration. PLoS ONE 7(11), e48719 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Adachi, K., et al.: Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin. Exp. Dermatol. 22(4), 278–283 (2013)CrossRefGoogle Scholar
  29. 29.
    Larese Filon, F., et al.: Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 72(2), 310–322 (2015)CrossRefGoogle Scholar
  30. 30.
    Senzui, M., et al.: Study on penetration of titanium dioxide (TiO(2)) nanoparticles into intact and damaged skin in vitro. J. Toxicol. Sci. 35(1), 107–113 (2010)CrossRefGoogle Scholar
  31. 31.
    Filipe, P., et al.: Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol. Physiol. 22(5), 266–275 (2009)CrossRefGoogle Scholar
  32. 32.
    Pinheiro, T., et al.: The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin. Nucl. Instrum. Methods Phys. Res. Sect. B 260(1), 119–123 (2007)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Monteiro-Riviere, N.A., et al.: Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol. Sci. 123, 264–280 (2011)CrossRefGoogle Scholar
  34. 34.
    Miquel-Jeanjean, C., et al.: Penetration study of formulated nanosized titanium dioxide in models of damaged and sun-irradiated skins. Photochem. Photobiol. 88(6), 1513–1521 (2012)CrossRefGoogle Scholar
  35. 35.
    Ahlberg, S., et al.: Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes. Eur. J. Pharm. Biopharm. 88(3), 651–657 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Larese, F.F., et al.: Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1–2), 33–37 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Brandenberger, C., et al.: Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Part. Fibre Toxicol. 10, 26 (2013)CrossRefGoogle Scholar
  38. 38.
    Hirai, T., et al.: Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part. Fibre Toxicol. 9, 3 (2012)CrossRefGoogle Scholar
  39. 39.
    Hirai, T., et al.: Size-dependent immune-modulating effect of amorphous nanosilica particles. Pharmazie 66(9), 727–728 (2011)Google Scholar
  40. 40.
    Yoshida, T., et al.: Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice. Nanoscale Res. Lett. 6(1), 195 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Yoshida, T., et al.: Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells. Biochem. Biophys. Res. Commun. 427(4), 748–752 (2012)CrossRefGoogle Scholar
  42. 42.
    Graf, C., et al.: Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 28(20), 7598–7613 (2012)CrossRefGoogle Scholar
  43. 43.
    Ostrowski, A., et al.: AHAPS-functionalized silica nanoparticles do not modulate allergic contact dermatitis in mice. Nanoscale Res. Lett. 9(1), 524 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Ostrowski, A., et al.: Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine 10(7), 1571–1581 (2014)CrossRefGoogle Scholar
  45. 45.
    Wright, C., et al.: Effects of titanium dioxide nanoparticles on human keratinocytes. Drug Chem. Toxicol. 40(1), 90–100 (2017)CrossRefGoogle Scholar
  46. 46.
    Niska, K., et al.: Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int. J. Nanomed. 10, 1095–1107 (2015)Google Scholar
  47. 47.
    Cai, R., et al.: Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res. 52(8), 2346–2348 (1992)Google Scholar
  48. 48.
    Zhang, A.P., Sun, Y.P.: Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J. Gastroenterol. 10(21), 3191–3193 (2004)CrossRefGoogle Scholar
  49. 49.
    Kang, S.J., et al.: Cytotoxicity and genotoxicity of titanium dioxide nanoparticles in UVA-irradiated normal peripheral blood lymphocytes. Drug Chem. Toxicol. 34(3), 277–284 (2011)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Ahamed, M., Alsalhi, M.S., Siddiqui, M.K.: Silver nanoparticle applications and human health. Clin. Chim. Acta 411(23–24), 1841–1848 (2010)CrossRefGoogle Scholar
  51. 51.
    Chernousova, S., Epple, M.: Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 52(6), 1636–1653 (2013)CrossRefGoogle Scholar
  52. 52.
    Rai, M., Yadav, A., Gade, A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1), 76–83 (2009)CrossRefGoogle Scholar
  53. 53.
    Chambers, B.A., et al.: Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ. Sci. Technol. 48(1), 761–769 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    Greulich, C., et al.: The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv. 2(17), 6981–6987 (2012)CrossRefGoogle Scholar
  55. 55.
    Foldbjerg, R., et al.: PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 190(2), 156–162 (2009)CrossRefGoogle Scholar
  56. 56.
    Alarifi, S., et al.: Reactive oxygen species-mediated DNA damage and apoptosis in human skin epidermal cells after exposure to nickel nanoparticles. Biol. Trace Elem. Res. 157(1), 84–93 (2014)CrossRefGoogle Scholar
  57. 57.
    Coombes, J.L., Robey, E.A.: Dynamic imaging of host-pathogen interactions in vivo. Nat. Rev. Immunol. 10(5), 353–364 (2010)CrossRefGoogle Scholar
  58. 58.
    Rancan, F., et al.: Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm. Res. 26(8), 2027–2036 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fanny Knorr
    • 1
  • Alexa Patzelt
    • 1
  • Martina Claudia Meinke
    • 1
  • Anika Vogt
    • 1
  • Ulrike Blume-Peytavi
    • 1
  • Eckart Rühl
    • 2
  • Jürgen Lademann
    • 1
    Email author
  1. 1.Department of Dermatology, Venerology and AllergologyCharité – Universitätsmedizin BerlinBerlinGermany
  2. 2.Physical ChemistryInstitute of Chemistry and Biochemistry, Free University of BerlinBerlinGermany

Personalised recommendations