Skip to main content

Interactions of Nanoparticles with Skin

  • Chapter
  • First Online:
Biological Responses to Nanoscale Particles

Abstract

The interactions of nanoparticles with skin and skin cells are complex and depend on the nanoparticle type. The present work provides an overview on the interactions between solid nanoparticles including silica, titanium dioxide, and silver particulates and skin and skin cells on the basis of previous research results. Generally, nanoparticles applied to skin tend to remain on the skin surface and penetrate only into the upper layers of the stratum corneum and the follicular ducts. In very few cases, nanoparticles have been found in deeper skin layers, particularly if the skin barrier was previously disrupted. Increased nanoparticle penetration may result in biologically relevant effects, e.g. cytotoxic cellular effects induced by silver ions released from wound dressings incorporating silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menon, G.K., Kligman, A.M.: Barrier functions of human skin: a holistic view. Skin Pharmacol. Physiol. 22(4), 178–189 (2009)

    Google Scholar 

  2. Hadgraft, J., Lane, M.E.: Advanced topical formulations (ATF). Int. J. Pharm. 514(1), 52–57 (2016)

    Google Scholar 

  3. Patzelt, A., Lademann, J.: Drug delivery to hair follicles. Expert Opin. Drug Deliv. 10(6), 787–797 (2013)

    Google Scholar 

  4. Albery, W.J., Hadgraft, J.: Percutaneous absorption: in vivo experiments. J. Pharm. Pharmacol. 31(3), 140–147 (1979)

    Google Scholar 

  5. Barbero, A.M., Frasch, H.F.: Transcellular route of diffusion through stratum corneum: results from finite element models. J. Pharm. Sci. 95(10), 2186–2194 (2006)

    Google Scholar 

  6. Sznitowska, M., Janicki, S., Williams, A.C.: Intracellular or intercellular localization of the polar pathway of penetration across stratum corneum. J. Pharm. Sci. 87(9), 1109–1114 (1998)

    Google Scholar 

  7. Patzelt, A., et al.: Selective follicular targeting by modification of the particle sizes. J. Control. Release 150(1), 45–48 (2011)

    Google Scholar 

  8. Toll, R., et al.: Penetration profile of microspheres in follicular targeting of terminal hair follicles. J. Invest. Dermatol. 123(1), 168–176 (2004)

    MathSciNet  Google Scholar 

  9. Lademann, J., et al.: Drug delivery with topically applied nanoparticles: science fiction or reality. Skin Pharmacol. Physiol. 26(4–6), 227–233 (2013)

    Google Scholar 

  10. Napierska, D., et al.: The nanosilica hazard: another variable entity. Part. Fibre Toxicol. 7(1), 39 (2010)

    Google Scholar 

  11. Shvedova, A.A., Kagan, V.E., Fadeel, B.: Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu. Rev. Pharmacol. Toxicol. 50, 63–88 (2010)

    Google Scholar 

  12. Cevc, G., Schätzlein, A., Richardsen, H.: Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta 1564(1), 21–30 (2002)

    Google Scholar 

  13. Schätzlein, A., Cevc, G.: Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (Transfersomes). Br. J. Dermatol. 138(4), 583–592 (1998)

    Google Scholar 

  14. Lademann, J., et al.: Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol. Appl. Skin Physiol. 12(5), 247–256 (1999)

    Google Scholar 

  15. Sadrieh, N., et al.: Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol. Sci. 115(1), 156–166 (2010)

    Google Scholar 

  16. Lademann, J., et al.: Hair follicles—a long-term reservoir for drug delivery. Skin Pharmacol. Physiol. 19(4), 232–236 (2006)

    Google Scholar 

  17. Graf, C., et al.: Qualitative detection of single submicron and nanoparticles in human skin by scanning transmission X-ray microscopy. J. Biomed. Opt. 14(2), 021015 (2009)

    ADS  Google Scholar 

  18. Larese, F.F., et al.: Human skin penetration of cobalt nanoparticles through intact and damaged skin. Toxicol. In Vitro 27, 121–127 (2013)

    Google Scholar 

  19. Baroli, B., et al.: Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol. 127(7), 1701–1712 (2007)

    Google Scholar 

  20. Vogt, A., et al.: 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J. Invest. Dermatol. 126(6), 1316–1322 (2006)

    Google Scholar 

  21. Mahe, B., et al.: Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J. Invest. Dermatol. 129(5), 1156–1164 (2009)

    Google Scholar 

  22. Mortensen, L.J., et al.: In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 8(9), 2779–2787 (2008)

    ADS  Google Scholar 

  23. Kubo, A., et al.: External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206(13), 2937–2946 (2009)

    Google Scholar 

  24. Rancan, F., et al.: Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano 6(8), 6829–6842 (2012)

    Google Scholar 

  25. Wang, L., Zhao, W., Tan, W.: Bioconjugated silica nanoparticles: development and applications. Nano Res 1, 99–115 (2008)

    Google Scholar 

  26. Abdel-Mottaleb, M.M., et al.: Surface-charge-dependent nanoparticles accumulation in inflamed skin. J. Pharm. Sci. 101(11), 4231–4239 (2012)

    Google Scholar 

  27. Bennett, S.W., et al.: Photoinduced disaggregation of TiO(2) nanoparticles enables transdermal penetration. PLoS ONE 7(11), e48719 (2012)

    ADS  Google Scholar 

  28. Adachi, K., et al.: Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin. Exp. Dermatol. 22(4), 278–283 (2013)

    Google Scholar 

  29. Larese Filon, F., et al.: Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 72(2), 310–322 (2015)

    Google Scholar 

  30. Senzui, M., et al.: Study on penetration of titanium dioxide (TiO(2)) nanoparticles into intact and damaged skin in vitro. J. Toxicol. Sci. 35(1), 107–113 (2010)

    Google Scholar 

  31. Filipe, P., et al.: Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol. Physiol. 22(5), 266–275 (2009)

    Google Scholar 

  32. Pinheiro, T., et al.: The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin. Nucl. Instrum. Methods Phys. Res. Sect. B 260(1), 119–123 (2007)

    ADS  Google Scholar 

  33. Monteiro-Riviere, N.A., et al.: Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol. Sci. 123, 264–280 (2011)

    Google Scholar 

  34. Miquel-Jeanjean, C., et al.: Penetration study of formulated nanosized titanium dioxide in models of damaged and sun-irradiated skins. Photochem. Photobiol. 88(6), 1513–1521 (2012)

    Google Scholar 

  35. Ahlberg, S., et al.: Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes. Eur. J. Pharm. Biopharm. 88(3), 651–657 (2014)

    MathSciNet  Google Scholar 

  36. Larese, F.F., et al.: Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1–2), 33–37 (2009)

    ADS  Google Scholar 

  37. Brandenberger, C., et al.: Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Part. Fibre Toxicol. 10, 26 (2013)

    Google Scholar 

  38. Hirai, T., et al.: Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part. Fibre Toxicol. 9, 3 (2012)

    Google Scholar 

  39. Hirai, T., et al.: Size-dependent immune-modulating effect of amorphous nanosilica particles. Pharmazie 66(9), 727–728 (2011)

    Google Scholar 

  40. Yoshida, T., et al.: Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice. Nanoscale Res. Lett. 6(1), 195 (2011)

    ADS  Google Scholar 

  41. Yoshida, T., et al.: Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells. Biochem. Biophys. Res. Commun. 427(4), 748–752 (2012)

    Google Scholar 

  42. Graf, C., et al.: Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 28(20), 7598–7613 (2012)

    Google Scholar 

  43. Ostrowski, A., et al.: AHAPS-functionalized silica nanoparticles do not modulate allergic contact dermatitis in mice. Nanoscale Res. Lett. 9(1), 524 (2014)

    ADS  Google Scholar 

  44. Ostrowski, A., et al.: Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine 10(7), 1571–1581 (2014)

    Google Scholar 

  45. Wright, C., et al.: Effects of titanium dioxide nanoparticles on human keratinocytes. Drug Chem. Toxicol. 40(1), 90–100 (2017)

    Google Scholar 

  46. Niska, K., et al.: Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int. J. Nanomed. 10, 1095–1107 (2015)

    Google Scholar 

  47. Cai, R., et al.: Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res. 52(8), 2346–2348 (1992)

    Google Scholar 

  48. Zhang, A.P., Sun, Y.P.: Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J. Gastroenterol. 10(21), 3191–3193 (2004)

    Google Scholar 

  49. Kang, S.J., et al.: Cytotoxicity and genotoxicity of titanium dioxide nanoparticles in UVA-irradiated normal peripheral blood lymphocytes. Drug Chem. Toxicol. 34(3), 277–284 (2011)

    MathSciNet  Google Scholar 

  50. Ahamed, M., Alsalhi, M.S., Siddiqui, M.K.: Silver nanoparticle applications and human health. Clin. Chim. Acta 411(23–24), 1841–1848 (2010)

    Google Scholar 

  51. Chernousova, S., Epple, M.: Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 52(6), 1636–1653 (2013)

    Google Scholar 

  52. Rai, M., Yadav, A., Gade, A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1), 76–83 (2009)

    Google Scholar 

  53. Chambers, B.A., et al.: Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ. Sci. Technol. 48(1), 761–769 (2014)

    ADS  Google Scholar 

  54. Greulich, C., et al.: The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv. 2(17), 6981–6987 (2012)

    Google Scholar 

  55. Foldbjerg, R., et al.: PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 190(2), 156–162 (2009)

    Google Scholar 

  56. Alarifi, S., et al.: Reactive oxygen species-mediated DNA damage and apoptosis in human skin epidermal cells after exposure to nickel nanoparticles. Biol. Trace Elem. Res. 157(1), 84–93 (2014)

    Google Scholar 

  57. Coombes, J.L., Robey, E.A.: Dynamic imaging of host-pathogen interactions in vivo. Nat. Rev. Immunol. 10(5), 353–364 (2010)

    Google Scholar 

  58. Rancan, F., et al.: Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm. Res. 26(8), 2027–2036 (2009)

    Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge the Deutsche Forschungsgemeinschaft for their support of the Priority Program SPP 1313 “Biological Responses to Nanoscale Particles”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Lademann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knorr, F. et al. (2019). Interactions of Nanoparticles with Skin. In: Gehr, P., Zellner, R. (eds) Biological Responses to Nanoscale Particles. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-12461-8_13

Download citation

Publish with us

Policies and ethics