Cytoplasmic Calcium Buffering: An Integrative Crosstalk

  • Juan A. GilabertEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1131)


Calcium (Ca2+) buffering is part of an integrative crosstalk between different mechanisms and elements involved in the control of free Ca2+ ions persistence in the cytoplasm and hence, in the Ca2+-dependence of many intracellular processes. Alterations of Ca2+ homeostasis and signaling from systemic to subcellular levels also play a pivotal role in the pathogenesis of many diseases.

Compared with Ca2+ sequestration towards intracellular Ca2+ stores, Ca2+ buffering is a rapid process occurring in a subsecond scale. Any molecule (or binding site) with the ability to bind Ca2+ ions could be considered, at least in principle, as a buffer. However, the term Ca2+ buffer is applied only to a small subset of Ca2+ binding proteins containing acidic side-chain residues.

Ca2+ buffering in the cytoplasm mainly relies on mobile and immobile or fixed buffers controlling the diffusion of free Ca2+ ions inside the cytosol both temporally and spatially. Mobility of buffers depends on their molecular weight, but other parameters as their concentration, affinity for Ca2+ or Ca2+ binding and dissociation kinetics next to their diffusional mobility also contribute to make Ca2+ signaling one of the most complex signaling activities of the cell.

The crosstalk between all the elements involved in the intracellular Ca2+ dynamics is a process of extreme complexity due to the diversity of structural and molecular elements involved but permit a highly regulated spatiotemporal control of the signal mediated by Ca2+ ions. The basis of modeling tools to study Ca2+ dynamics are also presented.


Ca2+ buffering Mobile buffers Immobile buffers Modeling Ca2+ signaling 


  1. 1.
    Dominguez DC (2004) Calcium signalling in bacteria. Mol Microbiol 54:291–297CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kazmierczak J, Kempe S, Kremer B (2013) Calcium in the early evolution of living systems: a biohistorical approach. Curr Org Chem 17:1738–1750CrossRefGoogle Scholar
  3. 3.
    Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A (2007) Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium 42:345–350CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Domínguez DC, Guragain M, Patrauchan M (2015) Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 57:151–165CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ripoll C, Norris V, Thellier M (2004) Ion condensation and signal transduction. BioEssays 26:549–557CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bronner F (2001) Extracellular and intracellular regulation of calcium homeostasis. Sci World J.
  7. 7.
    Harzheim D, Roderick HL, Bootman MD (2010) Chapter 117 – Intracellular calcium signaling. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signal, 2nd edn. Academic, San Diego, pp 937–942CrossRefGoogle Scholar
  8. 8.
    Hodgkin AL, Keynes RD (1957) Movements of labelled calcium in squid giant axons. J Physiol 138:253–281CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Smith SJ, Zucker RS (1980) Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones. J Physiol 300:167–196CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gorman AL, Thomas MV (1980) Intracellular calcium accumulation during depolarization in a molluscan neurone. J Physiol 308:259–285CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McBurney RN, Neering IR (1985) The measurement of changes in intracellular free calcium during action potentials in mammalian neurones. J Neurosci Methods 13:65–76CrossRefPubMedGoogle Scholar
  12. 12.
    Ahmed Z, Connor JA (1988) Calcium regulation by and buffer capacity of molluscan neurons during calcium transients. Cell Calcium 9:57–69CrossRefPubMedGoogle Scholar
  13. 13.
    Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol 450:273–301CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhou Z, Neher E (1993) Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol 469:245–273CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Matthews EA, Dietrich D (2015) Buffer mobility and the regulation of neuronal calcium domains. Front Cell Neurosci 9:1–11CrossRefGoogle Scholar
  16. 16.
    Naraghi M, Neher E (1997) Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J Neurosci 17:6961–6973CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Montalvo GB, Artalejo AR, Gilabert JA (2006) ATP from subplasmalemmal mitochondria controls Ca2+-dependent inactivation of CRAC channels. J Biol Chem 281:35616–35623CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Augustine GJ, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450:247–271CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34:1423–1442CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wagner J, Keizer J (1994) Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J 67:447–456CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gabso M, Neher E, Spira ME (1997) Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18:473–481CrossRefPubMedGoogle Scholar
  22. 22.
    Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium: calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sala F, Hernández-Cruz A (1990) Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys J 57:313–324CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nowycky MC, Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 64:77–91CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schwaller B (2010) Chapter 120 – Ca2+ buffers. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signal, 2nd edn. Academic, San Diego, pp 955–962CrossRefGoogle Scholar
  28. 28.
    Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:a004051CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Prins D, Michalak M (2011) Organellar calcium buffers. Cold Spring Harb Perspect Biol 3:a004069CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ebashi S (1963) Third component participating in the superprecipitation of “natural actomyosin”. Nature 200:1010CrossRefGoogle Scholar
  31. 31.
    Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem J 405:199–221CrossRefGoogle Scholar
  32. 32.
    Bindreither D, Lackner P (2009) Structural diversity of calcium binding sites. Gen Physiol Biophys 28 Spec No Focus:F82–F88Google Scholar
  33. 33.
    Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Falcke M (2003) Buffers and oscillations in intracellular Ca2+ dynamics. Biophys J 84: 28–41CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Duman JG, Chen L, Hille B (2008) Calcium transport mechanisms of PC12 cells. J Gen Physiol 131:307–323CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mathias RT, Cohen IS, Oliva C (1990) Limitations of the whole cell patch clamp technique in the control of intracellular concentrations. Biophys J 58:759–770CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lips MB, Keller BU (1998) Endogenous calcium buffering in motoneurones of the nucleus hypoglossus from mouse. J Physiol 511:105–117CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fierro L, Llano I (1996) High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J Physiol 496:617–625CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mogami H, Gardner J, Gerasimenko OV, Camello P, Petersen OH, Tepikin AV (1999) Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells. J Physiol 518:463–467CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Foehring RC, Zhang XF, Lee JCF, Callaway JC (2009) Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J Neurophysiol 102:2326–2333CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Palecek J, Lips MB, Keller BU (1999) Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J Physiol 520:485–502CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lee S-H, Rosenmund C, Schwaller B, Neher E (2000) Differences in Ca2+ buffering properties between excitatory and inhibitory hippocampal neurons from the rat. J Physiol 525:405–418CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ganitkevich VYa, Isenberg G (1995) Efficacy of peak Ca2+ currents (ICa) as trigger of sarcoplasmic reticulum Ca2+ release in myocytes from the guinea-pig coronary artery. J Physiol 484: 287–306CrossRefGoogle Scholar
  44. 44.
    Kawasaki H, Kretsinger RH (2017) Structural and functional diversity of EF-hand proteins: evolutionary perspectives. Protein Sci 26:1898–1920CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lee S-H, Schwaller B, Neher E (2000) Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites. J Physiol 525: 419–432CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nägerl UV, Novo D, Mody I, Vergara JL (2000) Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca2+. Biophys J 79:3009–3018CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 66:275–300CrossRefGoogle Scholar
  48. 48.
    Faas GC, Schwaller B, Vergara JL, Mody I (2007) Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol.
  49. 49.
    Matthews EA, Schoch S, Dietrich D (2013) Tuning local calcium availability: cell-type-specific immobile calcium buffer capacity in hippocampal neurons. J Neurosci 33:14431–14445CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA (2008) Cytoplasmic diffusion: molecular motors mix it up. J Cell Biol 183:583–587CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Schmidt H, Arendt O, Brown EB, Schwaller B, Eilers J (2007) Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones. J Neurochem 100:727–735CrossRefGoogle Scholar
  52. 52.
    Schmidt H, Brown EB, Schwaller B, Eilers J (2003) Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons quantified by fluorescence recovery after photobleaching. Biophys J 84:2599–2608CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Williams RJP (1998) Calcium: outside/inside homeostasis and signalling. Biochim Biophys Acta Mol Cell Res 1448:153–165CrossRefGoogle Scholar
  54. 54.
    Williams RJP (2006) The evolution of calcium biochemistry. Biochim Biophys Acta Mol Cell Res 1763:1139–1146CrossRefGoogle Scholar
  55. 55.
    Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433CrossRefGoogle Scholar
  56. 56.
    Soar J, Perkins GD, Abbas G et al (2010) European Resuscitation Council guidelines for resuscitation 2010 Section 8. Cardiac arrest in special circumstances: electrolyte abnormalities, poisoning, drowning, accidental hypothermia, hyperthermia, asthma, anaphylaxis, cardiac surgery, trauma, pregnancy, electrocution. Resuscitation 81:1400–1433CrossRefGoogle Scholar
  57. 57.
    Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci 99:1115–1122CrossRefGoogle Scholar
  58. 58.
    Giorgi C, Danese A, Missiroli S, Patergnani S, Pinton P (2018) Calcium dynamics as a machine for decoding signals. Trends Cell Biol 28:258–273CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Krebs J, Michalak M (eds) (2007) Calcium: a matter of life or death, vol 41, 1st edn. Elsevier Science, AmsterdamGoogle Scholar
  60. 60.
    Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5: S23–S30CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chan CS, Gertler TS, Surmeier DJ (2009) Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 32:249–256CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Blair HC, Schlesinger PH, Huang CL-H, Zaidi M (2007) Calcium signalling and calcium transport in bone disease. Subcell Biochem 45:539–562CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702CrossRefGoogle Scholar
  64. 64.
    Duchen MR, Verkhratsky A, Muallem S (2008) Mitochondria and calcium in health and disease. Cell Calcium 44:1–5CrossRefGoogle Scholar
  65. 65.
    Lloyd-Evans E, Waller-Evans H, Peterneva K, Platt FM (2010) Endolysosomal calcium regulation and disease. Biochem Soc Trans 38:1458–1464CrossRefGoogle Scholar
  66. 66.
    Bootman MD, Collins TJ, Peppiatt CM et al (2001) Calcium signalling—an overview. Semin Cell Dev Biol 12:3–10CrossRefGoogle Scholar
  67. 67.
    Roussel C, Erneux T, Schiffmann SN, Gall D (2006) Modulation of neuronal excitability by intracellular calcium buffering: from spiking to bursting. Cell Calcium 39:455–466CrossRefGoogle Scholar
  68. 68.
    Lipp P, Niggli E (1996) A hierarchical concept of cellular and subcellular Ca2+-signalling. Prog Biophys Mol Biol 65:265–296CrossRefGoogle Scholar
  69. 69.
    Niggli E, Shirokova N (2007) A guide to sparkology: the taxonomy of elementary cellular Ca2+ signaling events. Cell Calcium 42:379–387CrossRefGoogle Scholar
  70. 70.
    Stern MD (1992) Buffering of calcium in the vicinity of a channel pore. Cell Calcium 13: 183–192CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Saris NE, Carafoli E (2005) A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc) 70:187–194CrossRefGoogle Scholar
  72. 72.
    Lee D, Michalak M (2010) Membrane associated Ca2+ buffers in the heart. BMB Rep 43:151–157CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kaneuchi T, Sartain CV, Takeo S, Horner VL, Buehner NA, Aigaki T, Wolfner MF (2015) Calcium waves occur as Drosophila oocytes activate. Proc Natl Acad Sci 112:791–796CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23:10–14CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Alvarez J, Montero M, García-Sancho J (1999) Subcellular Ca2+ dynamics. Physiology 14:161–168CrossRefGoogle Scholar
  76. 76.
    Gunter TE, Gunter KK, Sheu SS, Gavin CE (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol Cell Physiol 267:C313–C339CrossRefGoogle Scholar
  77. 77.
    Mishra J, Jhun BS, Hurst S, O-Uchi J, Csordás G, Sheu S-S (2017) The mitochondrial Ca2+ Uniporter: structure, function and pharmacology. Handb Exp Pharmacol 240:129–156CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Alonso MT, Villalobos C, Chamero P, Alvarez J, García-Sancho J (2006) Calcium microdomains in mitochondria and nucleus. Cell Calcium 40:513–525CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sparagna GC, Gunter KK, Sheu S-S, Gunter TE (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem 270:27510–27515CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Buntinas L, Gunter KK, Sparagna GC, Gunter TE (2001) The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. Biochim Biophys Acta Bioenerg 1504:248–261CrossRefGoogle Scholar
  81. 81.
    Putney JW (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12CrossRefGoogle Scholar
  82. 82.
    Stathopulos PB, Ikura M (2017) Store operated calcium entry: from concept to structural mechanisms. Cell Calcium 63:3–7CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17:112–116CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747CrossRefGoogle Scholar
  85. 85.
    Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gilabert JA, Bakowski D, Parekh AB (2001) Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J 20:2672–2679CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Dupont G (2014) Modeling the intracellular organization of calcium signaling. Wiley Interdiscip Rev Syst Biol Med 6:227–237CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Falcke M (2004) Reading the patterns in living cells—the physics of Ca2+ signaling. Adv Phys 53:255–440CrossRefGoogle Scholar
  89. 89.
    Daub B, Ganitkevich VY (2000) An estimate of rapid cytoplasmic calcium buffering in a single smooth muscle cell. Cell Calcium 27:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Lin K-H, Taschenberger H, Neher E (2017) Dynamics of volume-averaged intracellular Ca2+ in a rat CNS nerve terminal during single and repetitive voltage-clamp depolarizations. J Physiol 595:3219–3236CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Chad JE, Eckert R (1984) Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. Biophys J 45:993–999CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Neher E (1986) Concentration profiles of intracellular calcium in the presence of a diffusible chelator. In: Klee M, Neher E, Singer W, Heinemann U (eds) Calcium electrogenesis neuronal functioning. Springer, Berlin, pp 80–96CrossRefGoogle Scholar
  93. 93.
    Fogelson AL, Zucker RS (1985) Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophys J 48:1003–1017CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Fakler B, Adelman JP (2008) Control of KCa channels by calcium nano/microdomains. Neuron 59:873–881CrossRefPubMedGoogle Scholar
  95. 95.
    Klingauf J, Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J 72:674–690CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Pedersen MG, Tagliavini A, Cortese G, Riz M, Montefusco F (2017) Recent advances in mathematical modeling and statistical analysis of exocytosis in endocrine cells. Math Biosci 283:60–70CrossRefPubMedGoogle Scholar
  97. 97.
    Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40:331–346CrossRefPubMedGoogle Scholar
  98. 98.
    Demuro A, Parker I (2006) Imaging single-channel calcium microdomains. Cell Calcium 40:413–422CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Smith GD, Wagner J, Keizer J (1996) Validity of the rapid buffering approximation near a point source of calcium ions. Biophys J 70:2527–2539CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Neher E (1998) Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24:345–357CrossRefPubMedGoogle Scholar
  101. 101.
    Gilkey JC, Jaffe LF, Ridgway EB, Reynolds GT (1978) A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol 76:448–466CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Jaffe LF (2008) Calcium waves. Philos Trans R Soc Lond Ser B Biol Sci 363:1311–1317CrossRefGoogle Scholar
  103. 103.
    Jaffe LF (1993) Classes and mechanisms of calcium waves. Cell Calcium 14:736–745CrossRefPubMedGoogle Scholar
  104. 104.
    Woods NM, Cuthbertson KSR, Cobbold PH (1987) Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. Cell Calcium 8:79–100CrossRefPubMedGoogle Scholar
  105. 105.
    MacQuaide N, Dempster J, Smith GL (2007) Measurement and modeling of Ca2+ waves in isolated rabbit ventricular cardiomyocytes. Biophys J 93:2581–2595CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Thul R, Bellamy TC, Roderick HL, Bootman MD, Coombes S (2008) Calcium oscillations. Adv Exp Med Biol 641:1–27PubMedGoogle Scholar
  107. 107.
    Williams GSB, Molinelli EJ, Smith GD (2008) Modeling local and global intracellular calcium responses mediated by diffusely distributed inositol 1,4,5-trisphosphate receptors. J Theor Biol 253:170–188CrossRefPubMedGoogle Scholar
  108. 108.
    Skupin A, Kettenmann H, Falcke M (2010) Calcium signals driven by single channel noise. PLoS Comput Biol.
  109. 109.
    Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations. Eur J Biochem 269:1333–1355CrossRefPubMedGoogle Scholar
  110. 110.
    Sneyd J, Keizer J, Sanderson MJ (1995) Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J 9:1463–1472CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Matveev V, Sherman A, Zucker RS (2002) New and corrected simulations of synaptic facilitation. Biophys J 83:1368–1373CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Zador A, Koch C (1994) Linearized models of calcium dynamics: formal equivalence to the cable equation. J Neurosci 14:4705–4715CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineComplutense University of MadridMadridSpain

Personalised recommendations