A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders

  • Aikaterini Britzolaki
  • Joseph Saurine
  • Benjamin Klocke
  • Pothitos M. PitychoutisEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1131)


Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA’s well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson’s disease and Alzheimer’s disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.


SERCA Calcium Central nervous system Bipolar disorder Schizophrenia Alzheimer’s disease Parkinson’s disease 



A.B. was supported by the University of Dayton (UD) Graduate School and by the UD Office for Graduate Affairs through the Graduate Student Summer Fellowship (GSSF) Program. J.S. was supported by a Barry Goldwater Scholarship in Excellence and Education Award, a Biology Department Lancaster-McDougall Award, a CAS Dean Fellowship, the Berry Summer Thesis Institute, and the UD Honors Program. P.M.P. was supported by an inaugural STEM Catalyst grant and Start-up funding from UD, as well as by Research Council Seed Grants (RCSG) from the University of Dayton Research Institute (UDRI); this work was supported by the National Institute Of Neurological Disorders and Stroke of the National Institutes of Health under award number R03NS109836 (to P.M.P.). Funding sponsors had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Conflict of Interest None.


  1. 1.
    Brini M et al (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814CrossRefGoogle Scholar
  2. 2.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565CrossRefGoogle Scholar
  4. 4.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zucker RS (1999) Calcium-and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9(3):305–313CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lyons MR, West AE (2011) Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 94(3):259–295CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59(6):861–872CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carafoli E (2003) The calcium-signalling saga: tap water and protein crystals. Nat Rev Mol Cell Biol 4(4):326–332CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Green KN et al (2008) SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Gen Physiol 132(2):i1CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dahl R (2017) A new target for Parkinson’s disease: small molecule SERCA activator CDN1163 ameliorates dyskinesia in 6-OHDA-lesioned rats. Bioorg Med Chem 25(1):53–57CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11):862–872CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Earls LR et al (2010) Dysregulation of presynaptic calcium and synaptic plasticity in a mouse model of 22q11 deletion syndrome. J Neurosci 30(47):15843–15855CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jacobsen NJ et al (1999) ATP2A2 mutations in Darier’s disease and their relationship to neuropsychiatric phenotypes. Hum Mol Genet 8(9):1631–1636CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35(1):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Berridge MJ, Bootman MD, Lipp P (1998) Calcium – a life and death signal. Nature 395(6703):645–648CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2(11):a004051CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vandecaetsbeek I et al (2009) Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump. Proc Natl Acad Sci 106(44):18533–18538CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Morth JP et al (2010) A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12:60CrossRefGoogle Scholar
  21. 21.
    Toyoshima C (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476(1):3–11CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bublitz M et al (2010) In and out of the cation pumps: P-type ATPase structure revisited. Curr Opin Struct Biol 20(4):431–439CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bobe R et al (2005) How many Ca2+ ATPase isoforms are expressed in a cell type? A growing family of membrane proteins illustrated by studies in platelets. Platelets 16(3–4):133–150CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dode L et al (2003) Dissection of the functional differences between sarco (endo) plasmic reticulum Ca2+-ATPase (SERCA) 1 and 2 isoforms and characterization of Darier disease (SERCA2) mutants by steady-state and transient kinetic analyses. J Biol Chem 278: 47877–47889CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dode L et al (2002) Dissection of the functional differences between sarco (endo) plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses. J Biol Chem 277(47):45579–45591CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Britzolaki A et al (2018) The SERCA2: a gatekeeper of neuronal calcium homeostasis in the brain. Cell Mol Neurobiol 38:981–994CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lytton J, MacLennan DH (1988) Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem 263(29):15024–15031PubMedPubMedCentralGoogle Scholar
  28. 28.
    Lytton J et al (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267(20):14483–14489PubMedPubMedCentralGoogle Scholar
  29. 29.
    MacLennan DH et al (1985) Amino-acid sequence of a Ca2+ + Mg2+−dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316(6030):696–700CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dally S et al (2010) Multiple and diverse coexpression, location, and regulation of additional SERCA2 and SERCA3 isoforms in nonfailing and failing human heart. J Mol Cell Cardiol 48(4):633–644CrossRefGoogle Scholar
  31. 31.
    Dally S et al (2006) Ca2+-ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2c). Biochem J 395(2):249–258CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    MacLennan DH (1970) Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem 245(17):4508–4518PubMedGoogle Scholar
  33. 33.
    Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–292CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Toyoshima C et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405(6787):647–655CrossRefGoogle Scholar
  35. 35.
    Abu-Abed M et al (2002) Characterization of the ATP-binding domain of the sarco (endo) plasmic reticulum Ca2+-ATPase: probing nucleotide binding by multidimensional NMR. Biochemistry 41(4):1156–1164CrossRefGoogle Scholar
  36. 36.
    Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418(6898):605–611CrossRefGoogle Scholar
  37. 37.
    Smolin N, Robia SL (2015) A structural mechanism for calcium transporter headpiece closure. J Phys Chem B 119(4):1407–1415CrossRefGoogle Scholar
  38. 38.
    Brini M, Carafoli E, Cali T (2017) The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochem Biophys Res Commun 483(4):1116–1124CrossRefGoogle Scholar
  39. 39.
    Møller JV et al (2005) The structural basis for coupling of Ca2+ transport to ATP hydrolysis by the sarcoplasmic reticulum Ca2+-ATPase. J Bioenerg Biomembr 37(6):359–364CrossRefGoogle Scholar
  40. 40.
    Guerini D (1998) The Ca2+ pumps and the Na+/Ca2+ exchangers. Biometals 11(4):319–330CrossRefGoogle Scholar
  41. 41.
    Zhang P et al (1998) Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution. Nature 392(6678):835–839CrossRefGoogle Scholar
  42. 42.
    Gelebart P et al (2003) Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 303(2):676–684CrossRefGoogle Scholar
  43. 43.
    Gunteski-Hamblin AM, Greeb J, Shull GE (1988) A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J Biol Chem 263(29):15032–15040PubMedGoogle Scholar
  44. 44.
    Lytton J et al (1989) Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem 264(12):7059–7065PubMedGoogle Scholar
  45. 45.
    Zarain-Herzberg A, MacLennan D, Periasamy M (1990) Characterization of rabbit cardiac sarco (endo) plasmic reticulum Ca2 (+)-ATPase gene. J Biol Chem 265(8):4670–4677PubMedGoogle Scholar
  46. 46.
    Brandl CJ et al (1986) Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44(4):597–607CrossRefGoogle Scholar
  47. 47.
    Dally S et al (2009) Multiple and diverse coexpression, location, and regulation of additional SERCA2 and SERCA3 isoforms in nonfailing and failing human heart. J Mol Cell Cardiol 48:633–644CrossRefGoogle Scholar
  48. 48.
    Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35(4):430–442CrossRefGoogle Scholar
  49. 49.
    Hao L, Rigaud J-L, Inesi G (1994) Ca2+/H+ countertransport and electrogenicity in proteoliposomes containing erythrocyte plasma membrane Ca-ATPase and exogenous lipids. J Biol Chem 269(19):14268–14275PubMedGoogle Scholar
  50. 50.
    Yu X et al (1993) H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. Biophys J 64(4):1232–1242CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Salvador JM et al (1998) Ca2+ transport by reconstituted synaptosomal ATPase is associated with H+ countertransport and net charge displacement. J Biol Chem 273(29):18230–18234CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89(4):1341–1378CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hasselbach W, Makinose M (1961) The calcium pump of the “relaxing granules” of muscle and its dependence on ATP-splitting. Biochem Z 333:518–528PubMedPubMedCentralGoogle Scholar
  54. 54.
    Lee C-H et al (2002) Ca2+ oscillations, gradients, and homeostasis in vascular smooth muscle. Am J Phys Heart Circ Phys 282(5):H1571–H1583Google Scholar
  55. 55.
    Dyla M et al (2018) Dynamics of P-type ATPase transport cycle revealed by single-molecule FRET. Biophys J 114(3):559aCrossRefGoogle Scholar
  56. 56.
    Carafoli E, Brini M (2000) Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol 4(2):152–161CrossRefGoogle Scholar
  57. 57.
    Olesen C et al (2004) Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306(5705):2251–2255CrossRefGoogle Scholar
  58. 58.
    Mueller B et al (2004) SERCA structural dynamics induced by ATP and calcium. Biochemistry 43(40):12846–12854CrossRefGoogle Scholar
  59. 59.
    Verboomen H et al (1994) The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca2+-transport ATPase (SERCA2a/b). Biochem J 303(Pt 3):979–984CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Martin V et al (2002) Three novel Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 3 isoforms expression, regulation, and function of the members of the SERCA3 family. J Biol Chem 277(27):24442–24452CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bobe R et al (2004) Identification, expression, function, and localization of a novel (sixth) isoform of the human sarco/endoplasmic reticulum Ca2+ ATPase 3 gene. J Biol Chem 279(23):24297–24306CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Brandl CJ et al (1987) Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem 262(8):3768–3774PubMedPubMedCentralGoogle Scholar
  63. 63.
    Korczak B et al (1988) Structure of the rabbit fast-twitch skeletal muscle Ca2+-ATPase gene. J Biol Chem 263(10):4813–4819PubMedPubMedCentralGoogle Scholar
  64. 64.
    Burk SE et al (1989) cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem 264(31):18561–18568PubMedPubMedCentralGoogle Scholar
  65. 65.
    Wu KD et al (1995) Localization and quantification of endoplasmic reticulum ca(2+)-ATPase isoform transcripts. Am J Phys 269(3 Pt 1):C775–C784CrossRefGoogle Scholar
  66. 66.
    Wuytack F et al (1989) Smooth muscle expresses a cardiac/slow muscle isoform of the Ca2+−transport ATPase in its endoplasmic reticulum. Biochem J 257(1):117–123CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lompre A-M et al (1989) Characterization and expression of the rat heart sarcoplasmic reticulum Ca2+-ATPase mRNA. FEBS Lett 249(1):35–41CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kimura T et al (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14(15):2189–2200CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Miller KK et al (1991) Localization of an endoplasmic reticulum calcium ATPase mRNA in rat brain by in situ hybridization. Neuroscience 43(1):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sepulveda MR, Hidalgo-Sanchez M, Mata AM (2004) Localization of endoplasmic reticulum and plasma membrane Ca2+-ATPases in subcellular fractions and sections of pig cerebellum. Eur J Neurosci 19(3):542–551CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Baba-Aissa F et al (1996) Distribution of the organellar Ca2+ transport ATPase SERCA2 isoforms in the cat brain. Brain Res 743(1–2):141–153CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Campbell AM, Wuytack F, Fambrough DM (1993) Differential distribution of the alternative forms of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, SERCA2b and SERCA2a, in the avian brain. Brain Res 605(1):67–76CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Plessers L et al (1991) A study of the organellar Ca2(+)-transport ATPase isozymes in pig cerebellar Purkinje neurons. J Neurosci 11(3):650–656CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Morita M, Kudo Y (2010) Growth factors upregulate astrocyte [Ca2+]i oscillation by increasing SERCA2b expression. Glia 58(16):1988–1995CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Salvador JM et al (2001) Distribution of the intracellular Ca2+-ATPase isoform 2b in pig brain subcellular fractions and cross-reaction with a monoclonal antibody raised against the enzyme isoform. J Biochem 129(4):621–626CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Dode L et al (1996) cDNA cloning, expression and chromosomal localization of the human sarco/endoplasmic reticulum Ca (2)-ATPase 3 gene. Biochem J 318(2):689–699CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Wuytack F et al (1994) A sarco/endoplasmic reticulum Ca2+-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem 269(2):1410–1416PubMedPubMedCentralGoogle Scholar
  78. 78.
    KOVÁCS T et al (2001) All three splice variants of the human sarco/endoplasmic reticulum Ca2+-ATPase 3 gene are translated to proteins: a study of their co-expression in platelets and lymphoid cells. Biochem J 358(3):559–568CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ait-Ghezali L et al (2014) Loss of endoplasmic reticulum calcium pump expression in choroid plexus tumours. Neuropathol Appl Neurobiol 40(6):726–735CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Pottorf W et al (2001) Function of SERCA mediated calcium uptake and expression of SERCA3 in cerebral cortex from young and old rats. Brain Res 914(1–2):57–65CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Baba-Aïssa F et al (1996) Purkinje neurons express the SERCA3 isoform of the organellar type Ca2+−transport ATPase. Mol Brain Res 41(1–2):169–174CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kessler RC et al (2007) Age of onset of mental disorders: a review of recent literature. Curr Opin Psychiatry 20(4):359–364CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kessler RC et al (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62(6):593–602CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 349(9063):1436–1442CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349(9064):1498–1504CrossRefGoogle Scholar
  86. 86.
    Whiteford HA et al (2013) Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet 382(9904):1575–1586CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ohi K et al (2017) Cognitive clustering in schizophrenia patients, their first-degree relatives and healthy subjects is associated with anterior cingulate cortex volume. NeuroImage Clin 16:248–256CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Purcell S, International Schizophrenia Consortium, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752CrossRefGoogle Scholar
  89. 89.
    Grunze H (2015) Bipolar disorder. In: Neurobiology of brain disorders. Elsevier, pp 655–673Google Scholar
  90. 90.
    Miller S et al (2016) Mixed depression in bipolar disorder: prevalence rate and clinical correlates during naturalistic follow-up in the Stanley bipolar network. Am J Psychiatr 173(10):1015–1023CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Allardyce J et al (2018) Association between schizophrenia-related polygenic liability and the occurrence and level of mood-incongruent psychotic symptoms in bipolar disorder. JAMA Psychiat 75(1):28–35CrossRefGoogle Scholar
  92. 92.
    Jimerson DC et al (1979) CSF calcium: clinical correlates in affective illness and schizophrenia. Biol Psychiatry 14:37–51PubMedPubMedCentralGoogle Scholar
  93. 93.
    Lidow MS (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Rev 43(1):70–84CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Lajtha A, Tettamanti G, Goracci G (2009) Handbook of neurochemistry and molecular neurobiology. Springer, New YorkCrossRefGoogle Scholar
  95. 95.
    Hertzberg L, Domany E (2018) Commentary: Integration of gene expression and GWAS results supports involvement of calcium signaling in Schizophrenia. J Ment Health Clin Psychol 2(3):5–7CrossRefGoogle Scholar
  96. 96.
    Woon PS et al (2017) CACNA1C genomewide supported psychosis genetic variation affects cortical brain white matter integrity in Chinese patients with schizophrenia. J Clin Psychiatry 75(11):e1284–e1290CrossRefGoogle Scholar
  97. 97.
    Dubovsky SL et al (1991) Elevated platelet intracellular calcium concentration in bipolar depression. Biol Psychiatry 29(5):441–450CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kusumi I, Koyama T, Yamashita I (1992) Thrombin-induced platelet calcium mobilization is enhanced in bipolar disorders. Biol Psychiatry 32(8):731–734CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Kusumi I, Koyama T, Yamashita I (1994) Serotonin-induced platelet intracellular calcium mobilization in depressed patients. Psychopharmacology 113(3–4):322–327CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Suzuki K et al (2003) Altered 5-HT-induced calcium response in the presence of staurosporine in blood platelets from bipolar disorder patients. Neuropsychopharmacology 28(6):1210–1214CrossRefGoogle Scholar
  101. 101.
    Suzuki K et al (2004) Effects of lithium and valproate on agonist-induced platelet intracellular calcium mobilization: relevance to myosin light chain kinase. Prog Neuro-Psychopharmacol Biol Psychiatry 28(1):67–72CrossRefGoogle Scholar
  102. 102.
    Suzuki K et al (2001) Serotonin-induced platelet intracellular calcium mobilization in various psychiatric disorders: is it specific to bipolar disorder? J Affect Disord 64(2–3):291–296CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Manji HK, Moore GJ, Chen G (2000) Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic–depressive illness. Biol Psychiatry 48(8):740–754CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Chen G et al (1999) The mood-stabilizing agents Lithium and valproate RobustlIncrease the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 72(2):879–882CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Chen R-W, Chuang D-M (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression A prominent role in neuroprotection against excitotoxicity. J Biol Chem 274(10):6039–6042CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Manji HK et al (1996) Regulation of signal transduction pathways by mood-stabilizing agents: implications for the delayed onset of therapeutic efficacy. J Clin Psychiatry 57:34–46. discussion 47-8PubMedGoogle Scholar
  107. 107.
    Manji HK, Moore GJ, Chen G (1999) Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol Psychiatry 46(7):929–940CrossRefGoogle Scholar
  108. 108.
    Manji HK, Moore GJ, Chen G (2000) Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry 61:82–96PubMedGoogle Scholar
  109. 109.
    Wang J-F, Bown C, Young LT (1999) Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78. Mol Pharmacol 55(3):521–527PubMedGoogle Scholar
  110. 110.
    Bhat S et al (2012) CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol 99(1):1–14CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Gonzalez S et al (2013) Suggestive evidence for association between L-type voltage-gated calcium channel (CACNA1C) gene haplotypes and bipolar disorder in Latinos: a family-based association study. Bipolar Disord 15(2):206–214CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Isaac C, Januel D (2016) Neural correlates of cognitive improvements following cognitive remediation in schizophrenia: a systematic review of randomized trials. Socioaffect Neurosci Psychol 6(1):30054CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Li W et al (2018) A molecule-based genetic association approach implicates a range of voltage-gated calcium channels associated with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 177(4):454–467CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Schizophrenia Working Group of the Psychiatric Genomics, C et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427CrossRefGoogle Scholar
  115. 115.
    Li Z et al (2017) Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet 49(11):1576–1583CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Ferreira MAR et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40(9):1056–1058CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Sklar P et al (2011) Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43(10):977–983CrossRefGoogle Scholar
  118. 118.
    Lencz T, Malhotra A (2015) Targeting the schizophrenia genome: a fast track strategy from GWAS to clinic. Mol Psychiatry 20(7):820–826CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Craddock N et al (1994) Familial cosegregation of major affective disorder and Darier's disease (keratosis follicularis). Br J Psychiatry 164(3):355–358CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Burge SM, Wilkinson JD (1992) Darier-white disease: a review of the clinical features in 163 patients. J Am Acad Dermatol 27(1):40–50CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Ringpfeil F et al (2001) Darier disease--novel mutations in ATP2A2 and genotype-phenotype correlation. Exp Dermatol 10(1):19–27CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Judge M, McLean W, Munro C (2010) Disorders of keratinization. In: Rook’s textbook of dermatology, vol 1, pp 1–122Google Scholar
  123. 123.
    Munro C (1992) The phenotype of Darier's disease: penetrance and expressivity in adults and children. Br J Dermatol 127(2):126–130CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Nellen RGL et al (2017) Mendelian disorders of cornification caused by defects in intracellular calcium pumps: mutation update and database for variants in ATP2A2 and ATP2C1 associated with Darier disease and Hailey–Hailey disease. Hum Mutat 38(4):343–356CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Green EK et al (2013) Novel ATP2A2 mutations in a large sample of individuals with D arier disease. J Dermatol 40(4):259–266CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Sakuntabhai A et al (1999) Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 21(3):271–277CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Ahn W et al (2003) Multiple effects of SERCA2b mutations associated with Darier's disease. J Biol Chem 278(23):20795–20801CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Sato K et al (2004) Distinct types of abnormality in kinetic properties of three Darier disease-causing sarco (endo) plasmic reticulum Ca2+-ATPase mutants that exhibit normal expression and high Ca2+ transport activity. J Biol Chem 279(34):35595–35603CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Miyauchi Y et al (2006) Comprehensive analysis of expression and function of 51 sarco (endo) plasmic reticulum Ca2+-ATPase mutants associated with Darier disease. J Biol Chem 281(32):22882–22895CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Foggia L et al (2006) Activity of the hSPCA1 Golgi Ca2+ pump is essential for Ca2+−mediated Ca2+ response and cell viability in Darier disease. J Cell Sci 119(4):671–679CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Leinonen P et al (2005) Keratinocytes cultured from patients with Hailey–Hailey disease and Darier disease display distinct patterns of calcium regulation. Br J Dermatol 153(1):113–117CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102CrossRefGoogle Scholar
  133. 133.
    Savignac M et al (2014) SERCA2 dysfunction in Darier disease causes endoplasmic reticulum stress and impaired cell-to-cell adhesion strength: rescue by Miglustat. J Investig Dermatol 134(7):1961–1970CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Celli A et al (2011) Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis. Br J Dermatol 164(1):16–25CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Engin B et al (2015) Darier disease: a fold (intertriginous) dermatosis. Clin Dermatol 33(4):448–451CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Suryawanshi H et al (2017) Darier disease: a rare genodermatosis. J Oral Maxillofac Pathol 21(2):321–321PubMedPubMedCentralGoogle Scholar
  137. 137.
    Cheour M et al (2009) Darier’s disease: an evaluation of its neuropsychiatric component. Encéphale 35(1):32–35CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Wang SL et al (2002) Darier’s disease associated with bipolar affective disorder: a case report. Kaohsiung J Med Sci 18(12):622–626PubMedPubMedCentralGoogle Scholar
  139. 139.
    Gordon-Smith K et al (2010) The neuropsychiatric phenotype in Darier disease. Br J Dermatol 163(3):515–522CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Jones I et al (2002) Evidence for familial cosegregation of major affective disorder and genetic markers flanking the gene for Darier’s disease. Mol Psychiatry 7(4):424–427CrossRefGoogle Scholar
  141. 141.
    Cederlöf M et al (2015) The association between Darier disease, bipolar disorder, and schizophrenia revisited: a population-based family study. Bipolar Disord 17(3):340–344CrossRefGoogle Scholar
  142. 142.
    Cederlöf M et al (2015) Intellectual disability and cognitive ability in Darier disease: Swedish nation-wide study. Br J Dermatol 173(1):155–158CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Dodiuk-Gad R et al (2016) Darier disease in Israel: combined evaluation of genetic and neuropsychiatric aspects. Br J Dermatol 174(3):562–568CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Baba-Aissa F et al (1998) Distribution and isoform diversity of the organellar Ca2+ pumps in the brain. Mol Chem Neuropathol 33(3):199–208CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Takeichi T et al (2016) Darier’s disease complicated by schizophrenia caused by a novel ATP2A2 mutation. Acta Derm Venereol 96(7):993–994CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Nakamura T et al (2016) Loss of function mutations in ATP2A2 and psychoses: a case report and literature survey. Psychiatry Clin Neurosci 70(8):342–350CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Noda K et al (2016) Novel and recurrent ATP2A2 mutations in Japanese patients with Darier’s disease. Nagoya J Med Sci 78(4):485–492PubMedPubMedCentralGoogle Scholar
  148. 148.
    Hough C et al (1999) Elevated basal and thapsigargin-stimulated intracellular calcium of platelets and lymphocytes from bipolar affective disorder patients measured by a fluorometric microassay. Biol Psychiatry 46(2):247–255CrossRefGoogle Scholar
  149. 149.
    Scambler PJ (2000) The 22q11 deletion syndromes. Hum Mol Genet 9(16):2421–2426CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    McDonald-McGinn DM et al (2001) Phenotype of the 22q11.2 deletion in individuals identified through an affected relative: cast a wide FISHing net! Genet Med 3(1):23–29CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Schreiner MJ et al (2013) Converging levels of analysis on a genomic hotspot for psychosis: insights from 22q11. 2 deletion syndrome. Neuropharmacology 68:157–173CrossRefGoogle Scholar
  152. 152.
    Chun S et al (2014) Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science 344(6188):1178–1182CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Kobrynski LJ, Sullivan KE (2007) Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 370(9596):1443–1452CrossRefGoogle Scholar
  154. 154.
    Yagi H et al (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362(9393):1366–1373CrossRefGoogle Scholar
  155. 155.
    Papangeli I, Scambler P (2013) The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. Wiley Interdiscip Rev Dev Biol 2(3):393–403CrossRefGoogle Scholar
  156. 156.
    Devaraju P et al (2017) Haploinsufficiency of the 22q11. 2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol Psychiatry 22(9):1313–1326CrossRefGoogle Scholar
  157. 157.
    Shi H, Wang Z (2018) Atypical microdeletion in 22q11 deletion syndrome reveals new candidate causative genes: a case report and literature review. Medicine 97(8):e9936CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Ellegood J et al (2014) Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol Psychiatry 19(1):99–107CrossRefGoogle Scholar
  159. 159.
    Mukai J et al (2015) Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron 86(3):680–695CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Karpinski BA et al (2014) Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. Dis Model Mech 7(2):245–257CrossRefGoogle Scholar
  161. 161.
    Oskarsdottir S, Vujic M, Fasth A (2004) Incidence and prevalence of the 22q11 deletion syndrome: a population-based study in Western Sweden. Arch Dis Child 89(2):148–151CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Chow EW et al (2006) Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophr Res 87(1):270–278CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Pulver AE et al (1994) Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 182(8):476–477CrossRefGoogle Scholar
  164. 164.
    Botto LD et al (2003) A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics 112(1 Pt 1):101–107CrossRefGoogle Scholar
  165. 165.
    Bassett AS et al (2011) Practical guidelines for managing patients with 22q11.2 deletion syndrome. J Pediatr 159(2):332–339.e1CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Bearden CE et al (2001) The neurocognitive phenotype of the 22q11. 2 deletion syndrome: selective deficit in visual-spatial memory. J Clin Exp Neuropsychol 23(4):447–464CrossRefGoogle Scholar
  167. 167.
    Eliez S et al (2000) Young children with Velo-cardio-facial syndrome (CATCH-22). Psychological and language phenotypes. Eur Child Adolesc Psychiatry 9(2):109–114CrossRefGoogle Scholar
  168. 168.
    Swillen A et al (2000) Chromosome 22q11 deletion syndrome: update and review of the clinical features, cognitive-behavioral spectrum, and psychiatric complications. Am J Med Genet A 97(2):128–135CrossRefGoogle Scholar
  169. 169.
    Gothelf D et al (2007) Developmental trajectories of brain structure in adolescents with 22q11. 2 deletion syndrome: a longitudinal study. Schizophr Res 96(1):72–81CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Rauch A et al (2006) Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A 140(19):2063–2074CrossRefGoogle Scholar
  171. 171.
    Bassett AS, Chow EW (2008) Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep 10(2):148–157CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Fung WL et al (2010) Elevated prevalence of generalized anxiety disorder in adults with 22q11.2 deletion syndrome. Am J Psychiatry 167(8):998CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Karayiorgou M, Simon TJ, Gogos JA (2010) 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 11:402–416CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Schneider M et al (2014) Psychiatric disorders from childhood to adulthood in 22q11. 2 deletion syndrome: results from the international consortium on brain and behavior in 22q11. 2 deletion syndrome. Am J Psychiatr 171(6):627–639CrossRefGoogle Scholar
  175. 175.
    Jonas RK, Montojo CA, Bearden CE (2014) The 22q11.2 deletion syndrome as a window into complex neuropsychiatric disorders over the lifespan. Biol Psychiatry 75(5):351–360CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Green T et al (2009) Psychiatric disorders and intellectual functioning throughout development in velocardiofacial (22q11. 2 deletion) syndrome. J Am Acad Child Adolesc Psychiatry 48(11):1060–1068CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Bassett AS et al (2003) The schizophrenia phenotype in 22q11 deletion syndrome. Am J Psychiatr 160(9):1580–1586CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Tang SX et al (2017) The psychosis Spectrum in 22q11.2 deletion syndrome is comparable to that of nondeleted youth. Biol Psychiatry 82(1):17–25CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Earls LR et al (2012) Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. J Neurosci 32(41):14132–14144CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Earls LR, Zakharenko SS (2014) A synaptic function approach to investigating complex psychiatric diseases. Neuroscientist 20(3):257–271CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Schizophrenia_Working_Group_of_the_Psychiatric_Genomics-Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427CrossRefGoogle Scholar
  182. 182.
    Richard EA et al (2017) Potential synergistic action of 19 schizophrenia risk genes in. Schizophr Res 180:64–69CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Genis-Mendoza A et al (2018) Comparative analysis of gene expression profiles involved in calcium signaling pathways using the NLVH animal model of schizophrenia. J Mol Neurosci 64(1):111–116CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Hagenston AM, Bading H (2011) Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol:a004564Google Scholar
  185. 185.
    Lisek M et al (2016) Regional brain dysregulation of Ca2+−handling systems in ketamine-induced rat model of experimental psychosis. Cell Tissue Res 363(3):609–620CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Stefani MR, Moghaddam B (2005) Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia. Biol Psychiatry 57(4):433–436CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Neill JC et al (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128(3):419–432CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Chakrabarti S et al (2015) Metabolic risk factors of sporadic Alzheimer’s disease: implications in the pathology, pathogenesis and treatment. Aging Dis 6(4):282–299CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348(14):1356–1364CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Warner TT, Schapira AH (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53(S3):S16–S25CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Cookson MR, Xiromerisiou G, Singleton A (2005) How genetics research in Parkinson’s disease is enhancing understanding of the common idiopathic forms of the disease. Curr Opin Neurol 18(6):706–711CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Gilks WP et al (2005) A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 365(9457):415–416PubMedPubMedCentralGoogle Scholar
  194. 194.
    Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55(3):259–272CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Braak H et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211CrossRefGoogle Scholar
  196. 196.
    Gandhi S, Wood NW (2005) Molecular pathogenesis of Parkinson’s disease. Hum Mol Genet 14(18):2749–2755CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Sudo H et al (2001) Secreted Abeta does not mediate neurotoxicity by antibody-stimulated amyloid precursor protein. Biochem Biophys Res Commun 282(2):548–556CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6(3):337–350CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Ganguly G et al (2017) Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Devel Ther 11:797–810CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Xie A et al (2014) Shared mechanisms of neurodegeneration in Alzheimer's disease and Parkinson’s disease. Biomed Res Int 2014:648740PubMedPubMedCentralGoogle Scholar
  202. 202.
    Bonda DJ et al (2011) The mitochondrial dynamics of Alzheimer’s disease and Parkinson’s disease offer important opportunities for therapeutic intervention. Curr Pharm Des 17(31):3374–3380CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Perier C, Vila M (2012) Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009332CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10(7):709–720CrossRefGoogle Scholar
  205. 205.
    Aiken CT et al (2011) Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics 10(5):R110.006924CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Pajares M et al (2015) Redox control of protein degradation. Redox Biol 6:409–420CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Baillet A et al (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Res 35(10):1530–1537CrossRefGoogle Scholar
  208. 208.
    Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann NY Acad Sci 1147(1):93–104CrossRefGoogle Scholar
  209. 209.
    Protter D, Lang C, Cooper AA (2012) alphaSynuclein and mitochondrial dysfunction: a pathogenic partnership in parkinson’s disease? Parkinsons Dis 2012:829207PubMedPubMedCentralGoogle Scholar
  210. 210.
    Banerjee K et al (2010) Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson’s disease. FEBS Lett 584(8):1571–1576CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Wang X et al (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–9103CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Devi L et al (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26(35):9057–9068CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Mounsey RB, Teismann P (2011) Mitochondrial dysfunction in Parkinson’s disease: pathogenesis and neuroprotection. Parkinson’s Dis 2011Google Scholar
  214. 214.
    Pacelli C et al (2011) Mitochondrial defect and PGC-1α dysfunction in parkin-associated familial Parkinson’s disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1812(8):1041–1053CrossRefGoogle Scholar
  215. 215.
    Wen Y et al (2011) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem, 2011:jbc. M110. 208447Google Scholar
  216. 216.
    Stutzmann GE, Mattson MP (2011) Endoplasmic reticulum Ca2+ handling in excitable cells in health and disease. Pharmacol Rev:pr. 110.003814Google Scholar
  217. 217.
    Woods NK, Padmanabhan J (2012) Neuronal calcium signaling and Alzheimer’s disease. In: Islam MS (ed) Calcium signaling. Springer Netherlands, Dordrecht, pp 1193–1217CrossRefGoogle Scholar
  218. 218.
    Gallego-Sandin S, Alonso MT, Garcia-Sancho J (2011) Calcium homoeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress. Biochem J 437(3):469–475CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85(1):201–279CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Verkhratsky A (2002) The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 32(5–6):393–404CrossRefGoogle Scholar
  221. 221.
    Corona C et al (2011) New therapeutic targets in Alzheimer’s disease: brain deregulation of calcium and zinc. Cell Death Dis 2(6):e176CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Mattson MP (2010) ER calcium and Alzheimer’s disease: in a state of flux. Sci Signal 3(114):pe10–pe10CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Magi S et al (2016) Intracellular calcium dysregulation: implications for Alzheimer’s disease. Biomed Res Int 2016:1–14CrossRefGoogle Scholar
  224. 224.
    Egorova P, Popugaeva E, Bezprozvanny I (2015) Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer’s disease. Semin Cell Dev Biol 40:127–133CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Berridge MJ (2013) Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 7(1):2–13CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Mattson MP (1990) Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 4(1):105–117CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Mattson MP et al (1993) Comparison of the effects of elevated intracellular aluminum and calcium levels on neuronal survival and tau immunoreactivity. Brain Res 602(1):21–31CrossRefGoogle Scholar
  228. 228.
    Kurbatskaya K et al (2016) Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer’s disease brain. Acta Neuropathol Commun 4(1):34CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Mattson MP et al (1992) Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12(2):376–389CrossRefGoogle Scholar
  230. 230.
    Mattson MP, Tomaselli KJ, Rydel RE (1993) Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF. Brain Res 621(1):35–49CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Khachaturian ZS (1989) Calcium, membranes, aging and Alzheimer’s disease: introduction and overview. Ann NY Acad Sci 568(1):1–4CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Shankar GM et al (2007) Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Thibault O, Gant JC, Landfield PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell 6(3):307–317CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Kamenetz F et al (2003) APP processing and synaptic function. Neuron 37(6):925–937CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Cirrito JR et al (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J Neurosci 23(26):8844–8853CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Kuchibhotla KV et al (2008) Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59(2):214–225CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Abramov E et al (2009) Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 12(12):1567–1576CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Surmeier DJ et al (2017) Calcium and Parkinson’s disease. Biochem Biophys Res Commun 483(4):1013–1019CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Calì T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. Biofactors 37(3):228–240CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Chan CS, Gertler TS, Surmeier DJ (2009) Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 32(5):249–256CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium 47(2):175–182CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Mosharov EV et al (2009) Interplay between cytosolic dopamine, calcium, and α-synuclein causes selective death of substantia nigra neurons. Neuron 62(2):218–229CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Nedergaard S, Flatman J, Engberg I (1993) Nifedipine-and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 466(1):727–747PubMedPubMedCentralGoogle Scholar
  244. 244.
    Calì T et al (2013) Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics. Biochim Biophys Acta (BBA) - Mol Basis Dis 1832(4):495–508CrossRefGoogle Scholar
  245. 245.
    Calì T et al (2012) α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 287(22):17914–17929CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Sandebring A et al (2009) Parkin deficiency disrupts calcium homeostasis by modulating phospholipase C signalling. FEBS J 276(18):5041–5052CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Nath S et al (2011) Raised calcium promotes α-synuclein aggregate formation. Mol Cell Neurosci 46(2):516–526CrossRefPubMedPubMedCentralGoogle Scholar
  248. 248.
    Rcom H et al (2014) Interactions between calcium and alpha-Synuclein in neurodegeneration. Biomol Ther 4(3)Google Scholar
  249. 249.
    Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 6(10):933–938CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Danzer KM et al (2007) Different species of α-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Hettiarachchi NT et al (2009) α-Synuclein modulation of Ca2+ signaling in human neuroblastoma (SH-SY5Y) cells. J Neurochem 111(5):1192–1201CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    El-Agnaf OM et al (2004) A strategy for designing inhibitors of α-synuclein aggregation and toxicity as a novel treatment for Parkinson’s disease and related disorders. FASEB J 18(11):1315–1317CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Rockenstein E et al (2002) Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68(5):568–578CrossRefGoogle Scholar
  254. 254.
    Vekrellis K et al (2011) Pathological roles of α-synuclein in neurological disorders. Lancet Neurol 10(11):1015–1025CrossRefGoogle Scholar
  255. 255.
    Vekrellis K et al (2009) Inducible over-expression of wild type α-synuclein in human neuronal cells leads to caspase-dependent non-apoptotic death. J Neurochem 109(5):1348–1362CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Kragh CL et al (2009) α-Synuclein aggregation and Ser-129 phosphorylation-dependent cell death in oligodendroglial cells. J Biol Chem 284(15):10211–10222CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Betzer C et al (2018) Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep 19:e44617CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Lowe R et al (2004) Calcium (II) selectively induces α-synuclein annular oligomers via interaction with the C-terminal domain. Protein Sci 13(12):3245–3252CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Goodwin J et al (2013) Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int 62(5):703–711CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Colla E et al (2012) Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J Neurosci 32(10):3301–3305CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Hurley MJ et al (2013) Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136(7):2077–2097CrossRefGoogle Scholar
  262. 262.
    Pasternak B et al (2012) Use of calcium channel blockers and Parkinson’s disease. Am J Epidemiol 175(7):627–635CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Ritz B et al (2010) L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol 67(5):600–606PubMedPubMedCentralGoogle Scholar
  264. 264.
    Becker C, Jick SS, Meier CR (2008) Use of antihypertensives and the risk of Parkinson disease. Neurology 70(16 Part 2):1438–1444CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Marras C et al (2012) Dihydropyridine calcium channel blockers and the progression of parkinsonism. Ann Neurol 71(3):362–369CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Lytton J, Westlin M, Hanley MR (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 266(26):17067–17071PubMedPubMedCentralGoogle Scholar
  267. 267.
    Park SW et al (2010) Sarco (endo) plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc Natl Acad Sci 2010:12044Google Scholar
  268. 268.
    Kang S et al (2015) Small molecular allosteric activator of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) attenuates diabetes and metabolic disorders. J Biol Chem, 2015:p. jbc. M115. 705012Google Scholar
  269. 269.
    Tanzi RE et al (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235(4791):880–884CrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    Sherrington R et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Levy-Lahad E et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(5226):973–977CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Rogaev EI et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775CrossRefPubMedPubMedCentralGoogle Scholar
  273. 273.
    Cruts M, Theuns J, Van Broeckhoven C (2012) Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 33(9):1340–1344CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Wolfe MS et al (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398(6727):513–517CrossRefGoogle Scholar
  275. 275.
    Annaert WG et al (1999) Presenilin 1 controls γ-secretase processing of amyloid precursor protein in pre-Golgi compartments of hippocampal neurons. J Cell Biol 147(2):277–294CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    De Strooper B et al (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390CrossRefGoogle Scholar
  277. 277.
    Jin H et al (2010) Presenilin-1 holoprotein is an interacting partner of sarco endoplasmic reticulum calcium-ATPase and confers resistance to endoplasmic reticulum stress. J Alzheimers Dis 20(1):261–273CrossRefGoogle Scholar
  278. 278.
    Brunello L et al (2009) Presenilin-2 dampens intracellular ca(2+) stores by increasing ca(2+) leakage and reducing ca(2+) uptake. J Cell Mol Med 13(9b):3358–3369CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    Dreses-Werringloer U et al (2008) A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell 133(7):1149–1161CrossRefPubMedPubMedCentralGoogle Scholar
  280. 280.
    Nensa FM et al (2014) Amyloid beta a4 precursor protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glycoprotein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) as new binding proteins in the human brain. Mol Cell Proteomics 13(2):475–488CrossRefGoogle Scholar
  281. 281.
    Ikin AF et al (2007) A macromolecular complex involving the amyloid precursor protein (APP) and the cytosolic adapter FE65 is a negative regulator of axon branching. Mol Cell Neurosci 35(1):57–63CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Cao X, Südhof TC (2001) A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293(5527):115–120CrossRefGoogle Scholar
  283. 283.
    Pietrzik CU et al (2004) FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci 24(17):4259–4265CrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    Kinoshita A et al (2002) The γ secretase-generated carboxyl-terminal domain of the amyloid precursor protein induces apoptosis via Tip60 in H4 cells. J Biol Chem 277(32):28530–28536CrossRefGoogle Scholar
  285. 285.
    Santiard-Baron D et al (2005) Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in β-amyloid load. J Neurochem 93(2):330–338CrossRefGoogle Scholar
  286. 286.
    Krajnak K, Dahl R (2018) A new target for Alzheimer’s disease: a small molecule SERCA activator is neuroprotective in vitro and improves memory and cognition in APP/PS1 mice. Bioorg Med Chem Lett 28(9):1591–1594CrossRefGoogle Scholar
  287. 287.
    Nussbaum RL (2018) Genetics of synucleinopathies. Cold Spring Harb Perspect Med 8(6):a024109CrossRefGoogle Scholar
  288. 288.
    Lashuel HA et al (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48CrossRefPubMedPubMedCentralGoogle Scholar
  289. 289.
    Ghiglieri V, Calabrese V, Calabresi P (2018) Alpha-Synuclein: from early synaptic dysfunction to neurodegeneration. Front Neurol 9:295CrossRefPubMedPubMedCentralGoogle Scholar
  290. 290.
    Tuon T et al (2012) Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of. Neuroscience 227:305–312CrossRefGoogle Scholar
  291. 291.
    Lundblad M et al (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson's disease. Eur J Neurosci 15(1):120–132CrossRefGoogle Scholar
  292. 292.
    Jouve L et al (2010) Deep brain stimulation of the center median–parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson’s disease. J Neurosci 30(29):9919–9928CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aikaterini Britzolaki
    • 1
  • Joseph Saurine
    • 1
  • Benjamin Klocke
    • 1
  • Pothitos M. Pitychoutis
    • 1
    Email author
  1. 1.Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND)University of DaytonDaytonUSA

Personalised recommendations