Calcium Signaling pp 93-129 | Cite as
Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions
Abstract
Plasma membrane Ca2+ transport ATPases (PMCA1-4, ATP2B1-4) are responsible for removing excess Ca2+ from the cell in order to keep the cytosolic Ca2+ ion concentration at the low level essential for normal cell function. While these pumps take care of cellular Ca2+ homeostasis they also change the duration and amplitude of the Ca2+ signal and can create Ca2+ gradients across the cell. This is accomplished by generating more than twenty PMCA variants each having the character – fast or slow response, long or short memory, distinct interaction partners and localization signals – that meets the specific needs of the particular cell-type in which they are expressed. It has become apparent that these pumps are essential to normal tissue development and their malfunctioning can be linked to different pathological conditions such as certain types of neurodegenerative and heart diseases, hearing loss and cancer. In this chapter we summarize the complexity of PMCA regulation and function under normal and pathological conditions with particular attention to recent developments of the field.
Keywords
Plasma membrane Ca2+ ATPase (PMCA) ATP2B1-4 Alternative splice Calmodulin Phosphatidylinositol-45-bisphosphate Actin cytoskeleton Ca2+ signal Genetic variation Altered expression Pathological conditionAbbreviations
- AD
Alzheimer’s disease
- ATP
adenosine triphosphate
- CaM
calmodulin
- CaMKII
calcium/calmodulin-dependent protein kinase II
- CASK
calcium/calmodulin-dependent serine protein kinase
- CBS
calmodulin binding sequence
- ER
endoplasmic reticulum
- ERK
extracellular-signal regulated kinase
- HDAC
histone deacetylase
- HER2
human epidermal growth factor receptor 2
- HUVEC
human umbilical vein endothelial cell
- IP3
inositol 1,4,5-trisphosphate
- IP3R
inositol 1,4,5-trisphosphate receptor
- IS
immunological synapse
- MAGUK
membrane-associated guanylate kinase
- MLEC
mouse lung endothelial cells
- NFAT
nuclear factor of activated T-cell
- NHERF2
Na+/H+ exchanger regulatory factor 2
- nNOS
neural nitric oxide synthase
- PIP2
phosphatidylinositol-4,5- bisphosphate
- PKC
protein kinase C
- PKA
protein kinase A
- PMCA
plasma membrane Ca2+ ATPases
- POST
partner of STIM
- PSD-95
post synaptic density protein 95
- RANKL
nuclear factor κB ligand
- RASSF1
Ras association domain-containing protein 1
- RBC
red blood cell
- SCD
sickle cell disease
- SERCA
sarco/endoplasmic reticulum Ca2+ ATPases
- SNP
small nucleotide polymorphisms
- SOCE
store operated Ca2+ entry
- SPCA
secretory-pathway Ca2+ ATPase
- STIM
stromal interacting molecule
- TGF
transforming growth factor
- TM domain
transmembrane domain
- TSA
trichostatin A
- VEGF
vascular endothelial growth factor
- VSMC
vascular smooth muscle cell
Notes
Acknowledgement
The authors are supported by grants from the Hungarian Scientific Research Funds NKFIH K119223 and FIKP-EMMI (AE).
References
- 1.Schatzmann HJ (1966) ATP-dependent Ca++-extrusion from human red cells. Experientia 22(6):364–365PubMedCrossRefGoogle Scholar
- 2.Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Penniston JT, Enyedi A (1998) Modulation of the plasma membrane Ca2+ pump. J Membr Biol 165(2):101–109PubMedCrossRefGoogle Scholar
- 4.Strehler EE (1990) Plasma membrane Ca2+ pumps and Na+/Ca2+ exchangers. Semin Cell Biol 1(4):283–295PubMedGoogle Scholar
- 5.Padanyi R, Paszty K, Hegedus L, Varga K, Papp B, Penniston JT et al (2016) Multifaceted plasma membrane Ca2+ pumps: from structure to intracellular Ca2+ handling and cancer. Biochim Biophys Acta 1863(6 Pt B):1351–1363PubMedCrossRefGoogle Scholar
- 6.Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46(1):84–101PubMedCrossRefGoogle Scholar
- 7.Thever MD, Saier MH Jr (2009) Bioinformatic characterization of p-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. J Membr Biol 229(3):115–130PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81(1):21–50PubMedCrossRefGoogle Scholar
- 9.Krebs J (2015) The plethora of PMCA isoforms: alternative splicing and differential expression. Biochim Biophys Acta 1853(9):2018–2024PubMedCrossRefGoogle Scholar
- 10.Green NM (1989) ATP-driven cation pumps: alignment of sequences. Biochem Soc Trans 17(6):972PubMedCrossRefPubMedCentralGoogle Scholar
- 11.Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430(6999):529–535PubMedCrossRefPubMedCentralGoogle Scholar
- 12.Sorensen TL, Moller JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304(5677):1672–1675PubMedCrossRefPubMedCentralGoogle Scholar
- 13.Jensen AM, Sorensen TL, Olesen C, Moller JV, Nissen P (2006) Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J 25(11):2305–2314PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Sweadner KJ, Donnet C (2001) Structural similarities of Na,K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Biochem J 356(Pt 3):685–704PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Toyoshima C (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim Biophys Acta 1793(6):941–946PubMedCrossRefPubMedCentralGoogle Scholar
- 16.Thomas RC (2009) The plasma membrane calcium ATPase (PMCA) of neurones is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded. J Physiol 587(2):315–327PubMedCrossRefPubMedCentralGoogle Scholar
- 17.Carafoli E, Brini M (2000) Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol 4(2):152–161PubMedCrossRefPubMedCentralGoogle Scholar
- 18.Strehler EE, Treiman M (2004) Calcium pumps of plasma membrane and cell interior. Curr Mol Med 4(3):323–335PubMedCrossRefPubMedCentralGoogle Scholar
- 19.Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E (2008) The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys 476(1):65–74PubMedCrossRefPubMedCentralGoogle Scholar
- 20.Penniston JT, Padanyi R, Paszty K, Varga K, Hegedus L, Enyedi A (2014) Apart from its known function, the plasma membrane Ca2+ATPase can regulate Ca2+ signaling by controlling phosphatidylinositol 4,5-bisphosphate levels. J Cell Sci 127(Pt 1):72–84PubMedCrossRefGoogle Scholar
- 21.Filoteo AG, Enyedi A, Penniston JT (1992) The lipid-binding peptide from the plasma membrane Ca2+ pump binds calmodulin, and the primary calmodulin-binding domain interacts with lipid. J Biol Chem 267(17):11800–11805PubMedPubMedCentralGoogle Scholar
- 22.Enyedi A, Flura M, Sarkadi B, Gardos G, Carafoli E (1987) The maximal velocity and the calcium affinity of the red cell calcium pump may be regulated independently. J Biol Chem 262(13):6425–6430PubMedPubMedCentralGoogle Scholar
- 23.Brodin P, Falchetto R, Vorherr T, Carafoli E (1992) Identification of two domains which mediate the binding of activating phospholipids to the plasma-membrane Ca2+ pump. Eur J Biochem 204(2):939–946PubMedCrossRefGoogle Scholar
- 24.Wang K, Sitsel O, Meloni G, Autzen HE, Andersson M, Klymchuk T et al (2014) Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514(7523):518–522PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Hansen SB (2015) Lipid agonism: the PIP2 paradigm of ligand-gated ion channels. Biochim Biophys Acta 1851(5):620–628PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Paszty K, Verma AK, Padanyi R, Filoteo AG, Penniston JT, Enyedi A (2002) Plasma membrane Ca2+ATPase isoform 4b is cleaved and activated by caspase-3 during the early phase of apoptosis. J Biol Chem 277(9):6822–6829PubMedCrossRefPubMedCentralGoogle Scholar
- 27.Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E et al (2002) Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 9(8):818–831PubMedCrossRefPubMedCentralGoogle Scholar
- 28.Enyedi A, Elwess NL, Filoteo AG, Verma AK, Paszty K, Penniston JT (1997) Protein kinase C phosphorylates the “a” forms of plasma membrane Ca2+ pump isoforms 2 and 3 and prevents binding of calmodulin. J Biol Chem 272(44):27525–27528PubMedCrossRefPubMedCentralGoogle Scholar
- 29.Enyedi A, Verma AK, Filoteo AG, Penniston JT (1996) Protein kinase C activates the plasma membrane Ca2+ pump isoform 4b by phosphorylation of an inhibitory region downstream of the calmodulin-binding domain. J Biol Chem 271(50):32461–32467PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Antalffy G, Paszty K, Varga K, Hegedus L, Enyedi A, Padanyi R (2013) A C-terminal di-leucine motif controls plasma membrane expression of PMCA4b. Biochim Biophys Acta 1833(12):2561–2572PubMedCrossRefGoogle Scholar
- 31.DeMarco SJ, Strehler EE (2001) Plasma membrane Ca2+-atpase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins. J Biol Chem 276(24):21594–21600PubMedCrossRefGoogle Scholar
- 32.DeMarco SJ, Chicka MC, Strehler EE (2002) Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes. J Biol Chem 277(12):10506–10511PubMedCrossRefGoogle Scholar
- 33.Penniston JT, Caride AJ, Strehler EE (2012) Alternative pathways for association and dissociation of the calmodulin-binding domain of plasma membrane Ca2+-ATPase isoform 4b (PMCA4b). J Biol Chem 287(35):29664–29671PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Caride AJ, Filoteo AG, Penniston JT, Strehler EE (2007) The plasma membrane Ca2+ pump isoform 4a differs from isoform 4b in the mechanism of calmodulin binding and activation kinetics: implications for Ca2+ signaling. J Biol Chem 282(35):25640–25648PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Juranic N, Atanasova E, Filoteo AG, Macura S, Prendergast FG, Penniston JT et al (2010) Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif. J Biol Chem 285(6):4015–4024PubMedCrossRefGoogle Scholar
- 36.Elshorst B, Hennig M, Forsterling H, Diener A, Maurer M, Schulte P et al (1999) NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry 38(38):12320–12332PubMedCrossRefGoogle Scholar
- 37.Chicka MC, Strehler EE (2003) Alternative splicing of the first intracellular loop of plasma membrane Ca2+-ATPase isoform 2 alters its membrane targeting. J Biol Chem 278(20):18464–18470PubMedCrossRefGoogle Scholar
- 38.Strehler EE (2013) Plasma membrane calcium ATPases as novel candidates for therapeutic agent development. J Pharm Pharm Sci 16(2):190–206PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Strehler EE (2015) Plasma membrane calcium ATPases: from generic Ca2+ sump pumps to versatile systems for fine-tuning cellular Ca(2.). Biochem Biophys Res Commun 460(1):26–33PubMedCrossRefGoogle Scholar
- 40.Afroze T, Husain M (2000) c-Myb-binding sites mediate G(1)/S-associated repression of the plasma membrane Ca2+-ATPase-1 promoter. J Biol Chem 275(12):9062–9069PubMedCrossRefGoogle Scholar
- 41.Habib T, Park H, Tsang M, de Alboran IM, Nicks A, Wilson L et al (2007) Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J Cell Biol 179(4):717–731PubMedPubMedCentralCrossRefGoogle Scholar
- 42.Zelinski JM, Sykes DE, Weiser MM (1991) The effect of vitamin D on rat intestinal plasma membrane CA-pump mRNA. Biochem Biophys Res Commun 179(2):749–755PubMedCrossRefGoogle Scholar
- 43.Cai Q, Chandler JS, Wasserman RH, Kumar R, Penniston JT (1993) Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression. Proc Natl Acad Sci U S A 90(4):1345–1349PubMedPubMedCentralCrossRefGoogle Scholar
- 44.Glendenning P, Ratajczak T, Dick IM, Prince RL (2000) Calcitriol upregulates expression and activity of the 1b isoform of the plasma membrane calcium pump in immortalized distal kidney tubular cells. Arch Biochem Biophys 380(1):126–132PubMedCrossRefGoogle Scholar
- 45.Glendenning P, Ratajczak T, Dick IM, Prince RL (2001) Regulation of the 1b isoform of the plasma membrane calcium pump by 1,25-dihydroxyvitamin D3 in rat osteoblast-like cells. J Bone Miner Res 16(3):525–534PubMedCrossRefGoogle Scholar
- 46.Silverstein RS, Tempel BL (2006) Atp2b2, encoding plasma membrane Ca2+-ATPase type 2, (PMCA2) exhibits tissue-specific first exon usage in hair cells, neurons, and mammary glands of mice. Neuroscience 141(1):245–257PubMedCrossRefGoogle Scholar
- 47.Minich RR, Li J, Tempel BL (2017) Early growth response protein 1 regulates promoter activity of alpha-plasma membrane calcium ATPase 2, a major calcium pump in the brain and auditory system. BMC Mol Biol 18(1):14PubMedPubMedCentralCrossRefGoogle Scholar
- 48.Lessard S, Gatof ES, Beaudoin M, Schupp PG, Sher F, Ali A et al (2017) An erythroid-specific ATP2B4 enhancer mediates red blood cell hydration and malaria susceptibility. J Clin Invest 127(8):3065–3074PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Verma AK, Enyedi A, Filoteo AG, Penniston JT (1994) Regulatory region of plasma membrane Ca2+ pump. 28 residues suffice to bind calmodulin but more are needed for full auto-inhibition of the activity. J Biol Chem 269(3):1687–1691PubMedGoogle Scholar
- 50.Caride AJ, Filoteo AG, Penheiter AR, Paszty K, Enyedi A, Penniston JT (2001) Delayed activation of the plasma membrane calcium pump by a sudden increase in Ca2+: fast pumps reside in fast cells. Cell Calcium 30(1):49–57PubMedCrossRefGoogle Scholar
- 51.Enyedi A, Vorherr T, James P, McCormick DJ, Filoteo AG, Carafoli E et al (1989) The calmodulin binding domain of the plasma membrane Ca2+ pump interacts both with calmodulin and with another part of the pump. J Biol Chem 264(21):12313–12321PubMedGoogle Scholar
- 52.Ba-Thein W, Caride AJ, Enyedi A, Paszty K, Croy CL, Filoteo AG et al (2001) Chimaeras reveal the role of the catalytic core in the activation of the plasma membrane Ca2+ pump. Biochem J 356(Pt 1):241–245PubMedPubMedCentralCrossRefGoogle Scholar
- 53.Bruce JIE (2018) Metabolic regulation of the PMCA: role in cell death and survival. Cell Calcium 69:28–36PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Paszty K, Antalffy G, Penheiter AR, Homolya L, Padanyi R, Ilias A et al (2005) The caspase-3 cleavage product of the plasma membrane Ca2+-ATPase 4b is activated and appropriately targeted. Biochem J 391(Pt 3):687–692PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A (2007) Plasma membrane Ca2+ ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci 1099:226–236PubMedCrossRefGoogle Scholar
- 56.Caride AJ, Elwess NL, Verma AK, Filoteo AG, Enyedi A, Bajzer Z et al (1999) The rate of activation by calmodulin of isoform 4 of the plasma membrane Ca2+ pump is slow and is changed by alternative splicing. J Biol Chem 274(49):35227–35232PubMedCrossRefGoogle Scholar
- 57.Caride AJ, Penheiter AR, Filoteo AG, Bajzer Z, Enyedi A, Penniston JT (2001) The plasma membrane calcium pump displays memory of past calcium spikes. Differences between isoforms 2b and 4b. J Biol Chem 276(43):39797–39804PubMedCrossRefGoogle Scholar
- 58.Missiaen L, Raeymaekers L, Wuytack F, Vrolix M, de Smedt H, Casteels R (1989) Phospholipid-protein interactions of the plasma-membrane Ca2+-transporting ATPase. Evidence for a tissue-dependent functional difference. Biochem J 263(3):687–694PubMedPubMedCentralCrossRefGoogle Scholar
- 59.Zaidi A, Adewale M, McLean L, Ramlow P (2018) The plasma membrane calcium pumps-The old and the new. Neurosci Lett 663:12–17PubMedCrossRefGoogle Scholar
- 60.Pignataro MF, Dodes-Traian MM, Gonzalez-Flecha FL, Sica M, Mangialavori IC, Rossi JP (2015) Modulation of plasma membrane Ca2+-ATPase by neutral phospholipids: effect of the micelle-vesicle transition and the bilayer thickness. J Biol Chem 290(10):6179–6190PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Dean WL, Whiteheart SW (2004) Plasma membrane Ca2+-ATPase (PMCA) translocates to filopodia during platelet activation. Thromb Haemost 91(2):325–333PubMedCrossRefGoogle Scholar
- 62.Bozulic LD, Malik MT, Powell DW, Nanez A, Link AJ, Ramos KS et al (2007) Plasma membrane Ca2+ -ATPase associates with CLP36, alpha-actinin and actin in human platelets. Thromb Haemost 97(4):587–597PubMedCrossRefGoogle Scholar
- 63.Dalghi MG, Fernandez MM, Ferreira-Gomes M, Mangialavori IC, Malchiodi EL, Strehler EE et al (2013) Plasma membrane calcium ATPase activity is regulated by actin oligomers through direct interaction. J Biol Chem 288(32):23380–23393PubMedPubMedCentralCrossRefGoogle Scholar
- 64.Vanagas L, de La Fuente MC, Dalghi M, Ferreira-Gomes M, Rossi RC, Strehler EE et al (2013) Differential effects of G- and F-actin on the plasma membrane calcium pump activity. Cell Biochem Biophys 66(1):187–198PubMedPubMedCentralCrossRefGoogle Scholar
- 65.Dalghi MG, Ferreira-Gomes M, Montalbetti N, Simonin A, Strehler EE, Hediger MA et al (2017) Cortical cytoskeleton dynamics regulates plasma membrane calcium ATPase isoform-2 (PMCA2) activity. Biochim Biophys Acta 1864(8):1413–1424CrossRefGoogle Scholar
- 66.Dalghi MG, Ferreira-Gomes M, Rossi JP (2017) Regulation of the plasma membrane calcium ATPases by the actin cytoskeleton. Biochem Biophys Res CommunGoogle Scholar
- 67.Paszty K, Caride AJ, Bajzer Z, Offord CP, Padanyi R, Hegedus L et al (2015) Plasma membrane Ca2+-ATPases can shape the pattern of Ca2+ transients induced by store-operated Ca2+ entry. Sci Signal 8(364):ra19PubMedCrossRefGoogle Scholar
- 68.Ritchie MF, Samakai E, Soboloff J (2012) STIM1 is required for attenuation of PMCA-mediated Ca2+ clearance during T-cell activation. EMBO J 31(5):1123–1133PubMedPubMedCentralCrossRefGoogle Scholar
- 69.Krapivinsky G, Krapivinsky L, Stotz SC, Manasian Y, Clapham DE (2011) POST, partner of stromal interaction molecule 1 (STIM1), targets STIM1 to multiple transporters. Proc Natl Acad Sci U S A 108(48):19234–19239PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O’Connor KT, Neumann JC et al (2004) Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279(32):33742–33750PubMedCrossRefGoogle Scholar
- 71.Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC et al (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279(27):28220–28226PubMedCrossRefGoogle Scholar
- 72.Prasad V, Okunade GW, Miller ML, Shull GE (2004) Phenotypes of SERCA and PMCA knockout mice. Biochem Biophys Res Commun 322(4):1192–1203PubMedCrossRefGoogle Scholar
- 73.Lefievre L, Nash K, Mansell S, Costello S, Punt E, Correia J et al (2012) 2-APB-potentiated channels amplify CatSper-induced Ca2+ signals in human sperm. Biochem J 448(2):189–200PubMedPubMedCentralCrossRefGoogle Scholar
- 74.Kawano S, Otsu K, Shoji S, Yamagata K, Hiraoka M (2003) Ca2+ oscillations regulated by Na(+)-Ca2+ exchanger and plasma membrane Ca2+ pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells. Cell Calcium 34(2):145–156PubMedCrossRefGoogle Scholar
- 75.Chen YF, Cao J, Zhong JN, Chen X, Cheng M, Yang J et al (2014) Plasma membrane Ca2+-ATPase regulates Ca2+ signaling and the proliferation of airway smooth muscle cells. Eur J Pharmacol 740:733–741PubMedCrossRefGoogle Scholar
- 76.Prasad V, Okunade G, Liu L, Paul RJ, Shull GE (2007) Distinct phenotypes among plasma membrane Ca2+-ATPase knockout mice. Ann N Y Acad Sci 1099:276–286PubMedCrossRefGoogle Scholar
- 77.Cali T, Brini M, Carafoli E (2018) The PMCA pumps in genetically determined neuronal pathologies. Neurosci Lett 663:2–11PubMedCrossRefGoogle Scholar
- 78.Ficarella R, Di Leva F, Bortolozzi M, Ortolano S, Donaudy F, Petrillo M et al (2007) A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci U S A 104(5):1516–1521PubMedPubMedCentralCrossRefGoogle Scholar
- 79.Reinhardt TA, Lippolis JD, Shull GE, Horst RL (2004) Null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2 impairs calcium transport into milk. J Biol Chem 279(41):42369–42373PubMedCrossRefGoogle Scholar
- 80.Padanyi R, Paszty K, Strehler EE, Enyedi A (2009) PSD-95 mediates membrane clustering of the human plasma membrane Ca2+ pump isoform 4b. Biochimica et Biophysica Acta 1793(6):1023–1032PubMedCrossRefGoogle Scholar
- 81.Schmidt N, Kollewe A, Constantin CE, Henrich S, Ritzau-Jost A, Bildl W et al (2017) Neuroplastin and basigin are essential auxiliary subunits of plasma membrane Ca2+-ATPases and key regulators of Ca2+ clearance. Neuron 96(4):827–38 e9PubMedCrossRefGoogle Scholar
- 82.Grati M, Aggarwal N, Strehler EE, Wenthold RJ (2006) Molecular determinants for differential membrane trafficking of PMCA1 and PMCA2 in mammalian hair cells. J Cell Sci 119(Pt 14):2995–3007PubMedCrossRefGoogle Scholar
- 83.Spiden SL, Bortolozzi M, Di Leva F, de Angelis MH, Fuchs H, Lim D et al (2008) The novel mouse mutation Oblivion inactivates the PMCA2 pump and causes progressive hearing loss. PLoS Genet 4(10):e1000238PubMedPubMedCentralCrossRefGoogle Scholar
- 84.Padanyi R, Xiong Y, Antalffy G, Lor K, Paszty K, Strehler EE et al (2010) Apical scaffolding protein NHERF2 modulates the localization of alternatively spliced plasma membrane Ca2+ pump 2B variants in polarized epithelial cells. J Biol Chem 285(41):31704–31712PubMedPubMedCentralCrossRefGoogle Scholar
- 85.Grati M, Schneider ME, Lipkow K, Strehler EE, Wenthold RJ, Kachar B (2006) Rapid turnover of stereocilia membrane proteins: evidence from the trafficking and mobility of plasma membrane Ca2+-ATPase 2. J Neurosci 26(23):6386–6395PubMedPubMedCentralCrossRefGoogle Scholar
- 86.Yang YM, Lee J, Jo H, Park S, Chang I, Muallem S et al (2014) Homer2 protein regulates plasma membrane Ca2+-ATPase-mediated Ca2+ signaling in mouse parotid gland acinar cells. J Biol Chem 289(36):24971–24979PubMedPubMedCentralCrossRefGoogle Scholar
- 87.Baggaley E, McLarnon S, Demeter I, Varga G, Bruce JI (2007) Differential regulation of the apical plasma membrane Ca2+ -ATPase by protein kinase A in parotid acinar cells. J Biol Chem 282(52):37678–37693PubMedCrossRefGoogle Scholar
- 88.Quintana A, Pasche M, Junker C, Al-Ansary D, Rieger H, Kummerow C et al (2011) Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 30(19):3895–3912PubMedPubMedCentralCrossRefGoogle Scholar
- 89.Tsai FC, Seki A, Yang HW, Hayer A, Carrasco S, Malmersjo S et al (2014) A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol 16(2):133–144PubMedPubMedCentralCrossRefGoogle Scholar
- 90.Kurusamy S, Lopez-Maderuelo D, Little R, Cadagan D, Savage AM, Ihugba JC et al (2017) Selective inhibition of plasma membrane calcium ATPase 4 improves angiogenesis and vascular reperfusion. J Mol Cell Cardiol 109:38–47PubMedCrossRefGoogle Scholar
- 91.Hegedus L, Garay T, Molnar E, Varga K, Bilecz A, Torok S et al (2017) The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells. Int J Cancer 140(12):2758–2770PubMedCrossRefGoogle Scholar
- 92.Buch MH, Pickard A, Rodriguez A, Gillies S, Maass AH, Emerson M et al (2005) The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway via interaction with the calcineurin A catalytic subunit. J Biol Chem 280(33):29479–29487PubMedCrossRefGoogle Scholar
- 93.Holton M, Yang D, Wang W, Mohamed TM, Neyses L, Armesilla AL (2007) The interaction between endogenous calcineurin and the plasma membrane calcium-dependent ATPase is isoform specific in breast cancer cells. FEBS Lett 581(21):4115–4119PubMedCrossRefGoogle Scholar
- 94.Baggott RR, Mohamed TM, Oceandy D, Holton M, Blanc MC, Roux-Soro SC et al (2012) Disruption of the interaction between PMCA2 and calcineurin triggers apoptosis and enhances paclitaxel-induced cytotoxicity in breast cancer cells. Carcinogenesis 33(12):2362–2368PubMedCrossRefGoogle Scholar
- 95.Baggott RR, Alfranca A, Lopez-Maderuelo D, Mohamed TM, Escolano A, Oller J et al (2014) Plasma membrane calcium ATPase isoform 4 inhibits vascular endothelial growth factor-mediated angiogenesis through interaction with calcineurin. Arterioscler Thromb Vasc Biol 34(10):2310–2320PubMedCrossRefGoogle Scholar
- 96.Schuh K, Uldrijan S, Gambaryan S, Roethlein N, Neyses L (2003) Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. J Biol Chem 278(11):9778–9783PubMedCrossRefGoogle Scholar
- 97.Aravindan RG, Fomin VP, Naik UP, Modelski MJ, Naik MU, Galileo DS et al (2012) CASK interacts with PMCA4b and JAM-A on the mouse sperm flagellum to regulate Ca2+ homeostasis and motility. J Cell Physiol 227(8):3138–3150PubMedPubMedCentralCrossRefGoogle Scholar
- 98.Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ (2017) The plasma membrane calcium ATPases and their role as major new players in human disease. Physiol Rev 97(3):1089–1125PubMedCrossRefGoogle Scholar
- 99.Giacomello M, De Mario A, Scarlatti C, Primerano S, Carafoli E (2013) Plasma membrane calcium ATPases and related disorders. Int J Biochem Cell Biol 45(3):753–762PubMedCrossRefGoogle Scholar
- 100.Hajieva P, Baeken MW, Moosmann B (2018) The role of Plasma Membrane Calcium ATPases (PMCAs) in neurodegenerative disorders. Neurosci Lett 663:29–38PubMedCrossRefPubMedCentralGoogle Scholar
- 101.Johnson T, Gaunt TR, Newhouse SJ, Padmanabhan S, Tomaszewski M, Kumari M et al (2011) Blood pressure loci identified with a gene-centric array. Am J Hum Genet 89(6):688–700PubMedPubMedCentralCrossRefGoogle Scholar
- 102.Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X et al (2011) Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet 43(6):531–538PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Weng L, Taylor KD, Chen YD, Sopko G, Kelsey SF, Bairey Merz CN et al (2016) Genetic loci associated with nonobstructive coronary artery disease in Caucasian women. Physiol Genomics 48(1):12–20PubMedCrossRefPubMedCentralGoogle Scholar
- 104.Lu X, Wang L, Chen S, He L, Yang X, Shi Y et al (2012) Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet 44(8):890–894PubMedPubMedCentralCrossRefGoogle Scholar
- 105.Ferguson JF, Matthews GJ, Townsend RR, Raj DS, Kanetsky PA, Budoff M et al (2013) Candidate gene association study of coronary artery calcification in chronic kidney disease: findings from the CRIC study (Chronic Renal Insufficiency Cohort). J Am Coll Cardiol 62(9):789–798PubMedPubMedCentralCrossRefGoogle Scholar
- 106.Wan JP, Wang H, Li CZ, Zhao H, You L, Shi DH et al (2014) The common single-nucleotide polymorphism rs2681472 is associated with early-onset preeclampsia in Northern Han Chinese women. Reprod Sci 21(11):1423–1427PubMedPubMedCentralCrossRefGoogle Scholar
- 107.Carrera F, Casart YC, Proverbio T, Proverbio F, Marin R (2003) Preeclampsia and calcium-ATPase activity of plasma membranes from human myometrium and placental trophoblast. Hypertens Pregnancy 22(3):295–304PubMedCrossRefGoogle Scholar
- 108.Hache S, Takser L, LeBellego F, Weiler H, Leduc L, Forest JC et al (2011) Alteration of calcium homeostasis in primary preeclamptic syncytiotrophoblasts: effect on calcium exchange in placenta. J Cell Mol Med 15(3):654–667PubMedCrossRefGoogle Scholar
- 109.Tabara Y, Kohara K, Kita Y, Hirawa N, Katsuya T, Ohkubo T et al (2010) Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: the Japanese Millennium Genome Project. Hypertension 56(5):973–980PubMedPubMedCentralCrossRefGoogle Scholar
- 110.Yang W, Liu J, Zheng F, Jia M, Zhao L, Lu T et al (2013) The evidence for association of ATP2B2 polymorphisms with autism in Chinese Han population. PLoS One 8(4):e61021PubMedPubMedCentralCrossRefGoogle Scholar
- 111.Prandini P, Pasquali A, Malerba G, Marostica A, Zusi C, Xumerle L et al (2012) The association of rs4307059 and rs35678 markers with autism spectrum disorders is replicated in Italian families. Psychiatr Genet 22(4):177–181PubMedCrossRefPubMedCentralGoogle Scholar
- 112.Schultz JM, Yang Y, Caride AJ, Filoteo AG, Penheiter AR, Lagziel A et al (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med 352(15):1557–1564PubMedCrossRefPubMedCentralGoogle Scholar
- 113.Bortolozzi M, Mammano F (2018) PMCA2 pump mutations and hereditary deafness. Neurosci Lett 663:18–24PubMedCrossRefPubMedCentralGoogle Scholar
- 114.Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19(4):390–394PubMedCrossRefPubMedCentralGoogle Scholar
- 115.Zanni G, Cali T, Kalscheuer VM, Ottolini D, Barresi S, Lebrun N et al (2012) Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci U S A 109(36):14514–14519PubMedPubMedCentralCrossRefGoogle Scholar
- 116.Cali T, Lopreiato R, Shimony J, Vineyard M, Frizzarin M, Zanni G et al (2015) A novel mutation in isoform 3 of the plasma membrane Ca2+ pump impairs cellular Ca2+ homeostasis in a patient with cerebellar ataxia and laminin subunit 1alpha mutations. J Biol Chem 290(26):16132–16141PubMedPubMedCentralCrossRefGoogle Scholar
- 117.Cali T, Frizzarin M, Luoni L, Zonta F, Pantano S, Cruz C et al (2017) The ataxia related G1107D mutation of the plasma membrane Ca2+ ATPase isoform 3 affects its interplay with calmodulin and the autoinhibition process. Biochim Biophys Acta 1863(1):165–173CrossRefGoogle Scholar
- 118.Williams TA, Monticone S, Schack VR, Stindl J, Burrello J, Buffolo F et al (2014) Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension 63(1):188–195PubMedCrossRefPubMedCentralGoogle Scholar
- 119.Kitamoto T, Suematsu S, Yamazaki Y, Nakamura Y, Sasano H, Matsuzawa Y et al (2016) Clinical and steroidogenic characteristics of aldosterone-producing adenomas with ATPase or CACNA1D gene mutations. J Clin Endocrinol Metab 101(2):494–503PubMedCrossRefPubMedCentralGoogle Scholar
- 120.Tauber P, Aichinger B, Christ C, Stindl J, Rhayem Y, Beuschlein F et al (2016) Cellular pathophysiology of an adrenal adenoma-associated mutant of the plasma membrane Ca2+-ATPase ATP2B3. Endocrinology. 157(6):2489–2499PubMedCrossRefPubMedCentralGoogle Scholar
- 121.Li M, Ho PW, Pang SY, Tse ZH, Kung MH, Sham PC et al (2014) PMCA4 (ATP2B4) mutation in familial spastic paraplegia. PLoS One 9(8):e104790PubMedPubMedCentralCrossRefGoogle Scholar
- 122.Ho PW, Pang SY, Li M, Tse ZH, Kung MH, Sham PC et al (2015) PMCA4 (ATP2B4) mutation in familial spastic paraplegia causes delay in intracellular calcium extrusion. Brain Behav 5(4):e00321PubMedPubMedCentralCrossRefGoogle Scholar
- 123.Basit S, Albalawi AM, Alharby E, Khoshhal KI (2017) Exome sequencing identified rare variants in genes HSPG2 and ATP2B4 in a family segregating developmental dysplasia of the hip. BMC Med Genet 18(1):34PubMedPubMedCentralCrossRefGoogle Scholar
- 124.Schatzmann HJ, Rossi JL (1971) (Ca2+ + Mg2+)-activated membrane ATPases in human red cells and their possible relations to cation transport. Biochimica et 75659:379–392Google Scholar
- 125.Wolf HU (1972) Studies on a Ca2+-dependent ATPase of human erythrocyte membranes – effects of Ca2+ and H+. Biochimica et Biophysica Acta 66:361–375CrossRefGoogle Scholar
- 126.Sarkadi B (1980) Active calcium transport in human red cells. Biochimica et Biophysica Acta 4:159–190Google Scholar
- 127.Schatzmann HJ (1975) Active calcium transport and Ca2+-Activated ATPase in human red cells. Curr Topics Membr Transport 6:125–168CrossRefGoogle Scholar
- 128.Strehler EE (1991) Recent advances in the molecular characterization of plasma membrane Ca2+ pumps. J Membr Biol 120:1–15PubMedCrossRefPubMedCentralGoogle Scholar
- 129.Borke JL, Minami J, Verma A, Penniston JT, Kumar R (1987) Monoclonal antibodies to human erythrocyte membrane Ca++-Mg++ adenosine triphosphatase pump recognize an epitope in the basolateral membrane of human kidney distal tubule cells. J Clin Invest 80:1225–1231PubMedPubMedCentralCrossRefGoogle Scholar
- 130.Caride AJ, Filoteo AG, Enyedi A, Verma AK, Penniston JT (1996) Detection of isoform 4 of the plasma membrane calcium pump in human tissues by using isoform-specific monoclonal antibodies. Biochem J 316:353–359PubMedPubMedCentralCrossRefGoogle Scholar
- 131.Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L (2013) Calcium in red blood cells – a perilous balance. Int J Mol Sci 14:9848–9872PubMedPubMedCentralCrossRefGoogle Scholar
- 132.Pasini EME, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M (2006) In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 108:791–801PubMedCrossRefPubMedCentralGoogle Scholar
- 133.Harrison D, Long C (1968) The calcium content of human erythrocytes. J Physiol 199:367–381PubMedPubMedCentralCrossRefGoogle Scholar
- 134.Schatzmann HJ (1973) Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol 235:551–569PubMedPubMedCentralCrossRefGoogle Scholar
- 135.Tiffert T, Bookchin RM, Lew VL (2003) Calcium homeostasis in normal and abnormal human red cells. In: Red cell membrane transport in health and disease. Springer, Berlin/Heidelberg, pp 373–405CrossRefGoogle Scholar
- 136.Larsen FL, Katz S, Roufogalis BD, Brooks DE (1981) Physiological shear stresses enhance the Ca2+ permeability of human erythrocytes. Nature 294:667–668PubMedCrossRefPubMedCentralGoogle Scholar
- 137.Lew VL, Daw N, Perdomo D, Etzion Z, Bookchin RM, Tiffert T (2003) Distribution of plasma membrane Ca2+ pump activity in normal human red blood cells. Distribution 102:4206–4213Google Scholar
- 138.Lew VL, Tiffert T, Etzion Z, Perdomo D, Daw N, Macdonald L et al (2005) Distribution of dehydration rates generated by maximal Gardos-channel activation in normal and sickle red blood cells. Blood 105:361–367PubMedCrossRefPubMedCentralGoogle Scholar
- 139.Lew VL, Daw N, Etzion Z, Tiffert T, Muoma A, Vanagas L et al (2007) Effects of age-dependent membrane transport changes on the homeostasis of senescent human red blood cells. Blood 110:1334–1342PubMedPubMedCentralCrossRefGoogle Scholar
- 140.Lew VL, Tiffert T (2017) On the mechanism of human red blood cell longevity: roles of calcium, the sodium pump, PIEZO1, and gardos channels. Front Physiol 8:977PubMedPubMedCentralCrossRefGoogle Scholar
- 141.Hertz L, Huisjes R, Llaudet-Planas E, Petkova-Kirova P, Makhro A, Danielczok JG, et al (2017) Is increased intracellular calcium in red blood cells a common component in the molecular mechanism causing anemia? Front Physiol 8Google Scholar
- 142.Vandorpe DH, Xu C, Shmukler BE, Otterbein LE, Trudel M, Sachs F et al (2010) Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes. PLoS One. 5(1):e8732PubMedPubMedCentralCrossRefGoogle Scholar
- 143.Gibson JS, Ellory JC (2002) Membrane transport in sickle cell disease. Blood Cells Mol Dis 28:303–314PubMedCrossRefPubMedCentralGoogle Scholar
- 144.Lew VL, Ortiz OE, Bookchin RM (1997) Stochastic nature and red cell population distribution of the sickling-induced Ca2+ permeability. J Clin Invest 99(11):2727–2735PubMedPubMedCentralCrossRefGoogle Scholar
- 145.Etzion Z, Tiffert T, Bookchin RM, Lew VL (1993) Effects of deoxygenation on active and passive Ca2+ transport and on the cytoplasmic Ca2+ levels of sickle cell anemia red cells. J Clin Investig 92:2489–2498PubMedCrossRefPubMedCentralGoogle Scholar
- 146.Lew VL, Bookchin RM (2005) Ion transport pathology in the mechanism of sickle cell dehydration. Physiol Rev 85(1):179–200PubMedCrossRefPubMedCentralGoogle Scholar
- 147.Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M et al (2015) Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. Am J Trop Med Hyg 93:42–56PubMedPubMedCentralCrossRefGoogle Scholar
- 148.Marquet S (2018) Overview of human genetic susceptibility to malaria: from parasitemia control to severe disease. Infect Genet Evol 66:399–409Google Scholar
- 149.Min-Oo G, Gros P (2005) Erythrocyte variants and the nature of their malaria protective effect. Cell Microbiol 7:753–763PubMedCrossRefPubMedCentralGoogle Scholar
- 150.Williams TN (2006) Human red blood cell polymorphisms and malaria. Curr Opin Microbiol 9:388–394PubMedCrossRefPubMedCentralGoogle Scholar
- 151.Gilles HM, Fletcher KA, Hendrickse RG, Linder R, Reddy S, Allan N (1967) Glucose-6-phosphate-dehydrogenase deficiency, sickling, and malaria in African children in South Western Nigeria. Lancet 289(7482):138–140Google Scholar
- 152.Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA et al (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600PubMedCrossRefPubMedCentralGoogle Scholar
- 153.Lell B, May J, Schmidt-Ott RJ, Lehman LG, Luckner D, Greve B et al (1999) The role of red blood cell polymorphisms in resistance and susceptibility to malaria. Clin Infect Dis 28:794–799PubMedCrossRefPubMedCentralGoogle Scholar
- 154.Fischer PR, Boone P (1998) Short report: severe malaria associated with blood group. Am J Trop Med Hyg 58:122–123PubMedCrossRefPubMedCentralGoogle Scholar
- 155.Shah SS, Rockett KA, Jallow M, Sisay-Joof F, Bojang KA, Pinder M et al (2016) Heterogeneous alleles comprising G6PD deficiency trait in West Africa exert contrasting effects on two major clinical presentations of severe malaria. Malar J 15:1–8CrossRefGoogle Scholar
- 156.Pasvol G, Wainscoat JS, Weatherall DJ (1982) Erythrocytes deficient in glycophorin resist invasion by the malarial parasite Plasmodium falciparum. Nature 297:64–66PubMedCrossRefPubMedCentralGoogle Scholar
- 157.Patel SS, King CL, Mgone CS, Kazura JW, Zimmerman PA (2004) Glycophorin C (Gerbich Antigen Blood Group) and Band 3 Polymorphisms in Two Malaria Holoendemic Regions of Papua New Guinea. Am J Hematol 75:1–5PubMedPubMedCentralCrossRefGoogle Scholar
- 158.Teeranaipong P, Ohashi J, Patarapotikul J, Kimura R, Nuchnoi P, Hananantachai H et al (2008) A functional single-nucleotide polymorphism in the CR1 promoter region contributes to protection against cerebral malaria. J Infect Dis 198:1880–1891PubMedCrossRefPubMedCentralGoogle Scholar
- 159.Durand PM, Coetzer TL (2008) Pyruvate kinase deficiency protects against malaria in humans. Haematologica 93:939–940PubMedCrossRefPubMedCentralGoogle Scholar
- 160.Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M et al (2011) Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480(7378):534–537PubMedPubMedCentralCrossRefGoogle Scholar
- 161.Egan ES, Weekes MP, Kanjee U, Manzo J, Srinivasan A, Lomas-Francis C et al (2018) Erythrocytes lacking the Langereis blood group protein ABCB6 are resistant to the malaria parasite Plasmodium falciparum. Commun Biol 1(1):45PubMedPubMedCentralCrossRefGoogle Scholar
- 162.Gazarini ML, Thomas AP, Pozzan T, Garcia CRS (2003) Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem. J Cell Biol 161:103–110PubMedPubMedCentralCrossRefGoogle Scholar
- 163.Timmann C, Thye T, Vens M, Evans J, May J, Ehmen C et al (2012) Genome-wide association study indicates two novel resistance loci for severe malaria. Nature 489:443–446PubMedCrossRefPubMedCentralGoogle Scholar
- 164.Bedu-Addo G, Meese S, Mockenhaupt FP (2013) An ATP2B4 polymorphism protects against malaria in pregnancy. J Infect Dis 207:1600–1603PubMedCrossRefPubMedCentralGoogle Scholar
- 165.Rockett KA, Clarke GM, Fitzpatrick K, Hubbart C, Jeffreys AE, Rowlands K et al (2014) Reappraisal of known malaria resistance loci in a large multicenter study. Nat Genet 46:1197–1204PubMedCentralCrossRefGoogle Scholar
- 166.Li J, Glessner JT, Zhang H, Hou C, Wei Z, Bradfield JP et al (2013) GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children. Hum Mol Genet 22:1457–1464PubMedCrossRefPubMedCentralGoogle Scholar
- 167.Lessard S, Stern EN, Beaudoin M, Schupp PG, Sher F, Ali A et al (2017) An erythroid – specific enhancer of ATP2B4 mediates red blood cell hydration and malaria susceptibility. J Clin Investig 1:1–10Google Scholar
- 168.Zambo B, Varady G, Padanyi R, Szabo E, Nemeth A, Lango T et al (2017) Decreased calcium pump expression in human erythrocytes is connected to a minor haplotype in the ATP2B4 gene. Cell Calcium 65:73–79PubMedCrossRefPubMedCentralGoogle Scholar
- 169.Tiffert T, Staines HM, Ellory JC, Lew VL (2000) Functional state of the plasma membrane Ca2+ pump in Plasmodium falciparum-infected human red blood cells. J Physiol 525(Pt 1):125–134PubMedPubMedCentralCrossRefGoogle Scholar
- 170.Spielmann T, Montagna GN, Hecht L, Matuschewski K (2012) Molecular make-up of the Plasmodium parasitophorous vacuolar membrane. Int J Med Microbiol 302:179–186PubMedCrossRefPubMedCentralGoogle Scholar
- 171.Lauer S, VanWye J, Harrison T, McManus H, Samuel BU, Hiller NL et al (2000) Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J 19:3556–3564PubMedPubMedCentralCrossRefGoogle Scholar
- 172.Dluzewski AR, Fryer PR, Griffiths S, Wilson RJ, Gratzer WB (1989) Red cell membrane protein distribution during malarial invasion. J cell Sci 92:691–699PubMedPubMedCentralGoogle Scholar
- 173.Gonzalez Flecha FL, Castello PR, Caride AJ, Gagliardino JJ, Rossi JP (1993) The erythrocyte calcium pump is inhibited by non-enzymic glycation: studies in situ and with the purified enzyme. Biochem J 293(Pt 2):369–375PubMedPubMedCentralCrossRefGoogle Scholar
- 174.Davis FB, Davis PJ, Nat G, Blas SD, MacGillivray M, Gutman S et al (1985) The effect of in vivo glucose administration on human erythrocyte Ca2+-ATPase activity and on enzyme responsiveness in vitro to thyroid hormone and calmodulin. Diabetes 34(7):639–646PubMedCrossRefPubMedCentralGoogle Scholar
- 175.Gonzalez Flecha FL, Bermudez MC, Cedola NV, Gagliardino JJ, Rossi JP (1990) Decreased Ca2(+)-ATPase activity after glycosylation of erythrocyte membranes in vivo and in vitro. Diabetes 39(6):707–711PubMedCrossRefGoogle Scholar
- 176.Bookchin RM, Etzion Z, Lew VL, Tiffert T (2009) Preserved function of the plasma membrane calcium pump of red blood cells from diabetic subjects with high levels of glycated haemoglobin. Cell Calcium 45(3):260–263PubMedCrossRefGoogle Scholar
- 177.Berridge MJ (2010) Calcium hypothesis of Alzheimer’s disease. Pflugers Arch 459(3):441–449PubMedCrossRefGoogle Scholar
- 178.Berrocal M, Marcos D, Sepulveda MR, Perez M, Avila J, Mata AM (2009) Altered Ca2+ dependence of synaptosomal plasma membrane Ca2+-ATPase in human brain affected by Alzheimer’s disease. FASEB J 23(6):1826–1834PubMedCrossRefGoogle Scholar
- 179.Berrocal M, Sepulveda MR, Vazquez-Hernandez M, Mata AM (2012) Calmodulin antagonizes amyloid-beta peptides-mediated inhibition of brain plasma membrane Ca2+-ATPase. Biochim Biophys Acta 1822(6):961–969PubMedCrossRefGoogle Scholar
- 180.Berrocal M, Corbacho I, Vazquez-Hernandez M, Avila J, Sepulveda MR, Mata AM (2015) Inhibition of PMCA activity by tau as a function of aging and Alzheimer’s neuropathology. Biochim Biophys Acta 1852(7):1465–1476PubMedCrossRefGoogle Scholar
- 181.Zaidi A (2010) Plasma membrane Ca-ATPases: targets of oxidative stress in brain aging and neurodegeneration. World J Biol Chem 1(9):271–280PubMedPubMedCentralCrossRefGoogle Scholar
- 182.Brendel A, Renziehausen J, Behl C, Hajieva P (2014) Downregulation of PMCA2 increases the vulnerability of midbrain neurons to mitochondrial complex I inhibition. Neurotoxicology 40:43–51PubMedCrossRefGoogle Scholar
- 183.Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508PubMedCrossRefGoogle Scholar
- 184.Nicot A, Kurnellas M, Elkabes S (2005) Temporal pattern of plasma membrane calcium ATPase 2 expression in the spinal cord correlates with the course of clinical symptoms in two rodent models of autoimmune encephalomyelitis. Eur J Neurosci 21(10):2660–2670PubMedPubMedCentralCrossRefGoogle Scholar
- 185.Kurnellas MP, Donahue KC, Elkabes S (2007) Mechanisms of neuronal damage in multiple sclerosis and its animal models: role of calcium pumps and exchangers. Biochem Soc Trans 35(Pt 5):923–926PubMedPubMedCentralCrossRefGoogle Scholar
- 186.Chaabane C, Dally S, Corvazier E, Bredoux R, Bobe R, Ftouhi B et al (2007) Platelet PMCA- and SERCA-type Ca2+ -ATPase expression in diabetes: a novel signature of abnormal megakaryocytopoiesis. J Thromb Haemost 5(10):2127–2135PubMedCrossRefGoogle Scholar
- 187.Souza KLA, Elsner M, Mathias PCF, Lenzen S, Tiedge M (2004) Cytokines activate genes of the endocytotic pathway in insulin-producing RINm5F cells. Diabetologia 47(7):1292–1302PubMedCrossRefGoogle Scholar
- 188.Jiang L, Allagnat F, Nguidjoe E, Kamagate A, Pachera N, Vanderwinden JM et al (2010) Plasma membrane Ca2+-ATPase overexpression depletes both mitochondrial and endoplasmic reticulum Ca2+ stores and triggers apoptosis in insulin-secreting BRIN-BD11 cells. J Biol Chem 285(40):30634–30643PubMedPubMedCentralCrossRefGoogle Scholar
- 189.Pachera N, Papin J, Zummo FP, Rahier J, Mast J, Meyerovich K et al (2015) Heterozygous inactivation of plasma membrane Ca2+-ATPase in mice increases glucose-induced insulin release and beta cell proliferation, mass and viability. Diabetologia 58(12):2843–2850PubMedCrossRefGoogle Scholar
- 190.Garcia ME, Del Zotto H, Caride AJ, Filoteo AG, Penniston JT, Rossi JP et al (2002) Expression and cellular distribution pattern of plasma membrane calcium pump isoforms in rat pancreatic islets. J Membr Biol 185(1):17–23PubMedCrossRefGoogle Scholar
- 191.Alzugaray ME, Garcia ME, Del Zotto HH, Raschia MA, Palomeque J, Rossi JP et al (2009) Changes in islet plasma membrane calcium-ATPase activity and isoform expression induced by insulin resistance. Arch Biochem Biophys 490(1):17–23PubMedCrossRefGoogle Scholar
- 192.Polak-Jonkisz D, Purzyc L, Laszki-Szczachor K, Musial K, Zwolinska D (2010) The endogenous modulators of Ca2+-Mg2+-dependent ATPase in children with chronic kidney disease (CKD). Nephrol Dial Transplant 25(2):438–444PubMedCrossRefGoogle Scholar
- 193.Bianchi G, Vezzoli G, Cusi D, Cova T, Elli A, Soldati L et al (1988) Abnormal red-cell calcium pump in patients with idiopathic hypercalciuria. N Engl J Med 319(14):897–901PubMedCrossRefGoogle Scholar
- 194.Cartwright EJ, Oceandy D, Austin C, Neyses L (2011) Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci China Life Sci 54(8):691–698PubMedPubMedCentralCrossRefGoogle Scholar
- 195.Queen LR, Ferro A (2006) Beta-adrenergic receptors and nitric oxide generation in the cardiovascular system. Cell Mol Life Sci 63(9):1070–1083PubMedCrossRefGoogle Scholar
- 196.Cartwright EJ, Oceandy D, Neyses L (2009) Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch 457(3):665–671PubMedCrossRefGoogle Scholar
- 197.Schuh K, Uldrijan S, Telkamp M, Rothlein N, Neyses L (2001) The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 155(2):201–205PubMedPubMedCentralCrossRefGoogle Scholar
- 198.Mohamed TM, Oceandy D, Prehar S, Alatwi N, Hegab Z, Baudoin FM et al (2009) Specific role of neuronal nitric-oxide synthase when tethered to the plasma membrane calcium pump in regulating the beta-adrenergic signal in the myocardium. J Biol Chem 284(18):12091–12098PubMedPubMedCentralCrossRefGoogle Scholar
- 199.Beigi F, Oskouei BN, Zheng M, Cooke CA, Lamirault G, Hare JM (2009) Cardiac nitric oxide synthase-1 localization within the cardiomyocyte is accompanied by the adaptor protein, CAPON. Nitric Oxide 21(3-4):226–233PubMedPubMedCentralCrossRefGoogle Scholar
- 200.Williams JC, Armesilla AL, Mohamed TM, Hagarty CL, McIntyre FH, Schomburg S et al (2006) The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281(33):23341–23348PubMedCrossRefGoogle Scholar
- 201.Ueda K, Valdivia C, Medeiros-Domingo A, Tester DJ, Vatta M, Farrugia G et al (2008) Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci U S A. 105(27):9355–9360PubMedPubMedCentralCrossRefGoogle Scholar
- 202.Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M et al (2006) A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 38(6):644–651PubMedCrossRefGoogle Scholar
- 203.Dewey FE, Grove ME, Priest JR, Waggott D, Batra P, Miller CL et al (2015) Sequence to medical phenotypes: a framework for interpretation of human whole genome DNA sequence data. PLoS Genet. 11(10):e1005496PubMedPubMedCentralCrossRefGoogle Scholar
- 204.Wu X, Chang B, Blair NS, Sargent M, York AJ, Robbins J et al (2009) Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. J Clin Invest. 119(4):976–985PubMedPubMedCentralGoogle Scholar
- 205.Sadi AM, Afroze T, Siraj MA, Momen A, White-Dzuro C, Zarrin-Khat D et al (2018) Cardiac-specific inducible overexpression of human plasma membrane Ca2+ ATPase 4b is cardioprotective and improves survival in mice following ischemic injury. Clin Sci (Lond). 132(6):641–654PubMedCrossRefGoogle Scholar
- 206.Mohamed TM, Abou-Leisa R, Stafford N, Maqsood A, Zi M, Prehar S et al (2016) The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy. Nat Commun. 7:11074PubMedPubMedCentralCrossRefGoogle Scholar
- 207.Gros R, Afroze T, You XM, Kabir G, Van Wert R, Kalair W et al (2003) Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circ Res. 93(7):614–621PubMedCrossRefGoogle Scholar
- 208.Perez AV, Picotto G, Carpentieri AR, Rivoira MA, Peralta Lopez ME, Tolosa de Talamoni NG (2008) Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway. Digestion. 77(1):22–34PubMedCrossRefGoogle Scholar
- 209.Armbrecht HJ, Boltz MA, Hodam TL (2002) Differences in intestinal calcium and phosphate transport between low and high bone density mice. Am J Physiol Gastrointest Liver Physiol. 282(1):G130–G136PubMedCrossRefGoogle Scholar
- 210.Lee SM, Riley EM, Meyer MB, Benkusky NA, Plum LA, DeLuca HF et al (2015) 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components. J Biol Chem. 290(29):18199–18215PubMedPubMedCentralCrossRefGoogle Scholar
- 211.Ryan ZC, Craig TA, Filoteo AG, Westendorf JJ, Cartwright EJ, Neyses L et al (2015) Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D3. Biochem Biophys Res Commun 467(1):152–156PubMedPubMedCentralCrossRefGoogle Scholar
- 212.Dong XL, Zhang Y, Wong MS (2014) Estrogen deficiency-induced Ca balance impairment is associated with decrease in expression of epithelial Ca transport proteins in aged female rats. Life Sci. 96(1-2):26–32PubMedCrossRefPubMedCentralGoogle Scholar
- 213.Wu F, Dassopoulos T, Cope L, Maitra A, Brant SR, Harris ML et al (2007) Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflamm Bowel Dis. 13(7):807–821PubMedCrossRefPubMedCentralGoogle Scholar
- 214.Martin R, Harvey NC, Crozier SR, Poole JR, Javaid MK, Dennison EM et al (2007) Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual. Bone. 40(5):1203–1208PubMedCrossRefPubMedCentralGoogle Scholar
- 215.Bredoux R, Corvazier E, Dally S, Chaabane C, Bobe R, Raies A et al (2006) Human platelet Ca2+-ATPases: new markers of cell differentiation as illustrated in idiopathic scoliosis. Platelets. 17(6):421–433PubMedCrossRefPubMedCentralGoogle Scholar
- 216.Kim HJ, Prasad V, Hyung SW, Lee ZH, Lee SW, Bhargava A et al (2012) Plasma membrane calcium ATPase regulates bone mass by fine-tuning osteoclast differentiation and survival. J Cell Biol. 199(7):1145–1158PubMedPubMedCentralCrossRefGoogle Scholar
- 217.Prevarskaya N, Ouadid-Ahidouch H, Skryma R, Shuba Y (2014) Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol Sci. 369(1638):20130097PubMedPubMedCentralCrossRefGoogle Scholar
- 218.Ruschoff JH, Brandenburger T, Strehler EE, Filoteo AG, Heinmoller E, Aumuller G et al (2012) Plasma membrane calcium ATPase expression in human colon multistep carcinogenesis. Cancer Invest. 30(4):251–257PubMedCrossRefPubMedCentralGoogle Scholar
- 219.Ribiczey P, Tordai A, Andrikovics H, Filoteo AG, Penniston JT, Enouf J et al (2007) Isoform-specific up-regulation of plasma membrane Ca2+ATPase expression during colon and gastric cancer cell differentiation. Cell Calcium. 42(6):590–605PubMedPubMedCentralCrossRefGoogle Scholar
- 220.Aung CS, Kruger WA, Poronnik P, Roberts-Thomson SJ, Monteith GR (2007) Plasma membrane Ca2+-ATPase expression during colon cancer cell line differentiation. Biochem Biophys Res Commun. 355(4):932–936PubMedCrossRefGoogle Scholar
- 221.Ribiczey P, Papp B, Homolya L, Enyedi A, Kovacs T (2015) Selective upregulation of the expression of plasma membrane calcium ATPase isoforms upon differentiation and 1,25(OH)2D3-vitamin treatment of colon cancer cells. Biochem Biophys Res Commun. 464(1):189–194PubMedCrossRefPubMedCentralGoogle Scholar
- 222.Varga K, Paszty K, Padanyi R, Hegedus L, Brouland JP, Papp B et al (2014) Histone deacetylase inhibitor- and PMA-induced upregulation of PMCA4b enhances Ca2+ clearance from MCF-7 breast cancer cells. Cell calcium. 55(2):78–92PubMedCrossRefGoogle Scholar
- 223.Lee WJ, Roberts-Thomson SJ, Holman NA, May FJ, Lehrbach GM, Monteith GR (2002) Expression of plasma membrane calcium pump isoform mRNAs in breast cancer cell lines. Cell Signal 14(12):1015–1022PubMedCrossRefPubMedCentralGoogle Scholar
- 224.Lee WJ, Roberts-Thomson SJ, Monteith GR (2005) Plasma membrane calcium-ATPase 2 and 4 in human breast cancer cell lines. Biochem Biophys Res Commun 337(3):779–783PubMedCrossRefPubMedCentralGoogle Scholar
- 225.VanHouten J, Sullivan C, Bazinet C, Ryoo T, Camp R, Rimm DL et al (2010) PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc Natl Acad Sci U S A. 107(25):11405–11410PubMedPubMedCentralCrossRefGoogle Scholar
- 226.Jeong J, VanHouten JN, Dann P, Kim W, Sullivan C, Yu H et al (2016) PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci U S A. 113(3):E282–E290PubMedPubMedCentralCrossRefGoogle Scholar
- 227.Peters AA, Milevskiy MJ, Lee WC, Curry MC, Smart CE, Saunus JM et al (2016) The calcium pump plasma membrane Ca2+-ATPase 2 (PMCA2) regulates breast cancer cell proliferation and sensitivity to doxorubicin. Sci Rep. 6:25505PubMedPubMedCentralCrossRefGoogle Scholar
- 228.Hegedus L, Padanyi R, Molnar J, Paszty K, Varga K, Kenessey I et al (2017) Histone deacetylase inhibitor treatment increases the expression of the plasma membrane Ca2+ pump PMCA4b and inhibits the migration of melanoma cells independent of ERK. Front Oncol. 7:95PubMedPubMedCentralCrossRefGoogle Scholar
- 229.Saito K, Uzawa K, Endo Y, Kato Y, Nakashima D, Ogawara K et al (2006) Plasma membrane Ca2+ ATPase isoform 1 down-regulated in human oral cancer. Oncol Rep. 15(1):49–55PubMedGoogle Scholar
- 230.Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 14:73PubMedPubMedCentralCrossRefGoogle Scholar
- 231.Supper V, Schiller HB, Paster W, Forster F, Boulegue C, Mitulovic G et al (2016) Association of CD147 and calcium exporter PMCA4 uncouples IL-2 expression from early TCR signaling. J Immunol. 196(3):1387–1399PubMedCrossRefPubMedCentralGoogle Scholar
- 232.Hu X, Su J, Zhou Y, Xie X, Peng C, Yuan Z et al (2017) Repressing CD147 is a novel therapeutic strategy for malignant melanoma. Oncotarget. 8(15):25806–25813PubMedPubMedCentralGoogle Scholar
- 233.Rimessi A, Coletto L, Pinton P, Rizzuto R, Brini M, Carafoli E (2005) Inhibitory interaction of the 14-3-3{epsilon} protein with isoform 4 of the plasma membrane Ca2+-ATPase pump. J Biol Chem. 280(44):37195–37203PubMedCrossRefPubMedCentralGoogle Scholar
- 234.Linde CI, Di Leva F, Domi T, Tosatto SC, Brini M, Carafoli E (2008) Inhibitory interaction of the 14-3-3 proteins with ubiquitous (PMCA1) and tissue-specific (PMCA3) isoforms of the plasma membrane Ca2+ pump. Cell Calcium. 43(6):550–561PubMedCrossRefPubMedCentralGoogle Scholar
- 235.Vanagas L, Rossi RC, Caride AJ, Filoteo AG, Strehler EE, Rossi JP (2007) Plasma membrane calcium pump activity is affected by the membrane protein concentration: evidence for the involvement of the actin cytoskeleton. Biochim Biophys Acta. 1768(6):1641–1649PubMedPubMedCentralCrossRefGoogle Scholar
- 236.Zabe M, Dean WL (2001) Plasma membrane Ca2+-ATPase associates with the cytoskeleton in activated platelets through a PDZ-binding domain. J Biol Chem. 276(18):14704–14709PubMedCrossRefPubMedCentralGoogle Scholar
- 237.James P, Maeda M, Fischer R, Verma AK, Krebs J, Penniston JT et al (1988) Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem. 263(6):2905–2910PubMedPubMedCentralGoogle Scholar
- 238.Cali T, Brini M, Carafoli E (2017) Regulation of cell calcium and role of plasma membrane calcium ATPases. Int Rev Cell Mol Biol. 332:259–296PubMedCrossRefPubMedCentralGoogle Scholar
- 239.Sgambato-Faure V, Xiong Y, Berke JD, Hyman SE, Strehler EE (2006) The Homer-1 protein Ania-3 interacts with the plasma membrane calcium pump. Biochem Biophys Res Commun. 343(2):630–637PubMedCrossRefPubMedCentralGoogle Scholar
- 240.Salm EJ, Thayer SA (2012) Homer proteins accelerate Ca2+ clearance mediated by the plasma membrane Ca2+ pump in hippocampal neurons. Biochem Biophys Res Commun. 424(1):76–81PubMedPubMedCentralCrossRefGoogle Scholar
- 241.Oceandy D, Cartwright EJ, Emerson M, Prehar S, Baudoin FM, Zi M et al (2007) Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation. 115(4):483–492PubMedCrossRefPubMedCentralGoogle Scholar
- 242.Olli KE, Li K, Galileo DS, Martin-DeLeon PA (2018) Plasma membrane calcium ATPase 4 (PMCA4) co-ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity. J Cell Physiol. 233(1):11–22PubMedCrossRefPubMedCentralGoogle Scholar
- 243.Holton M, Mohamed TM, Oceandy D, Wang W, Lamas S, Emerson M et al (2010) Endothelial nitric oxide synthase activity is inhibited by the plasma membrane calcium ATPase in human endothelial cells. Cardiovasc Res. 87(3):440–448PubMedPubMedCentralCrossRefGoogle Scholar
- 244.Armesilla AL, Williams JC, Buch MH, Pickard A, Emerson M, Cartwright EJ et al (2004) Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras-associated factor 1 (RASSF1). J Biol Chem. 279(30):31318–31328PubMedCrossRefPubMedCentralGoogle Scholar
- 245.Kurnellas MP, Lee AK, Li H, Deng L, Ehrlich DJ, Elkabes S (2007) Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Mol Cell Neurosci. 34(2):178–188PubMedCrossRefPubMedCentralGoogle Scholar
- 246.Kim E, DeMarco SJ, Marfatia SM, Chishti AH, Sheng M, Strehler EE (1998) Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains. J Biol Chem. 273(3):1591–1595PubMedCrossRefPubMedCentralGoogle Scholar
- 247.Kruger WA, Yun CC, Monteith GR, Poronnik P (2009) Muscarinic-induced recruitment of plasma membrane Ca2+-ATPase involves PSD-95/Dlg/Zo-1-mediated interactions. J Biol Chem 284(3):1820–1830PubMedPubMedCentralCrossRefGoogle Scholar
- 248.Goellner GM, DeMarco SJ, Strehler EE (2003) Characterization of PISP, a novel single-PDZ protein that binds to all plasma membrane Ca2+-ATPase b-splice variants. Ann N Y Acad Sci 986:461–471PubMedCrossRefPubMedCentralGoogle Scholar