Advertisement

Calcium Signaling pp 1013-1030 | Cite as

Calcium Signaling in Endothelial Colony Forming Cells in Health and Disease

  • Francesco MocciaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1131)

Abstract

Endothelial colony forming cells (ECFCs) represent the only known truly endothelial precursors. ECFCs are released in peripheral circulation to restore the vascular networks dismantled by an ischemic insult or to sustain the early phases of the angiogenic switch in solid tumors. A growing number of studies demonstrated that intracellular Ca2+ signaling plays a crucial role in driving ECFC proliferation, migration, homing and neovessel formation. For instance, vascular endothelial growth factor (VEGF) triggers intracellular Ca2+ oscillations and stimulates angiogenesis in healthy ECFCs, whereas stromal derived factor-1α promotes ECFC migration through a biphasic Ca2+ signal. The Ca2+ toolkit endowed to circulating ECFCs is extremely plastic and shows striking differences depending on the physiological background of the donor. For instance, inositol-1,4,5-trisphosphate-induced Ca2+ release from the endoplasmic reticulum is downregulated in tumor-derived ECFCs, while agonists-induced store-operated Ca2+ entry is up-regulated in renal cellular carcinoma and is unaltered in breast cancer and reduced in infantile hemangioma. This remodeling of the Ca2+ toolkit prevents VEGF-induced pro-angiogenic Ca2+ oscillations in tumor-derived ECFCs. An emerging theme of research is the dysregulation of the Ca2+ toolkit in primary myelofibrosis-derived ECFCs, as this myeloproliferative disorder may depend on a driver mutation in the calreticulin gene. In this chapter, I provide a comprehensive, but succinct, description on the architecture and role of the intracellular Ca2+ signaling toolkit in ECFCs derived from umbilical cord blood and from peripheral blood of healthy donors, cancer patients and subjects affected by primary myelofibrosis.

Keywords

Endothelial colony forming cells Ca2+ signaling Inositol-1,4,5-trisphosphate receptors Two-pore channel 1 STIM1 Orai1 TRPC1 TRPC3 VEGF SDF-1α 

References

  1. 1.
    Medina RJ, Barber CL, Sabatier F, Dignat-George F, Melero-Martin JM, Khosrotehrani K et al (2017) Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl Med 6(5):1316–1320CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Moccia F, Ruffinatti FA, Zuccolo E (2015) Intracellular Ca(2)(+) signals to reconstruct a broken heart: still a theoretical approach? Curr Drug Targets 16(8):793–815CrossRefPubMedGoogle Scholar
  3. 3.
    Moccia F, Zuccolo E, Poletto V, Cinelli M, Bonetti E, Guerra G et al (2015) Endothelial progenitor cells support tumour growth and metastatisation: implications for the resistance to anti-angiogenic therapy. Tumour Biol 36(9):6603–6614CrossRefPubMedGoogle Scholar
  4. 4.
    Banno K, Yoder MC (2018) Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr Res 83(1–2):283–290CrossRefPubMedGoogle Scholar
  5. 5.
    Yoder MC (2012) Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2(7):a006692CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Naito H, Wakabayashi T, Kidoya H, Muramatsu F, Takara K, Eino D et al (2016) Endothelial side population cells contribute to tumor angiogenesis and antiangiogenic drug resistance. Cancer Res 76(11):3200–3210CrossRefPubMedGoogle Scholar
  7. 7.
    Tasev D, Koolwijk P, van Hinsbergh VW (2016) Therapeutic potential of human-derived endothelial colony-forming cells in animal models. Tissue Eng Part B Rev 22(5):371–382CrossRefPubMedGoogle Scholar
  8. 8.
    Laurenzana A, Margheri F, Chilla A, Biagioni A, Margheri G, Calorini L et al (2016) Endothelial progenitor cells as shuttle of anticancer agents. Hum Gene Ther 27:784–791CrossRefPubMedGoogle Scholar
  9. 9.
    Moccia F, Tanzi F, Munaron L (2014) Endothelial remodelling and intracellular calcium machinery. Curr Mol Med 14(4):457–480CrossRefPubMedGoogle Scholar
  10. 10.
    Noren DP, Chou WH, Lee SH, Qutub AA, Warmflash A, Wagner DS et al (2016) Endothelial cells decode VEGF-mediated Ca2+ signaling patterns to produce distinct functional responses. Sci Signal 9(416):ra20CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pafumi I, Favia A, Gambara G, Papacci F, Ziparo E, Palombi F et al (2015) Regulation of angiogenic functions by angiopoietins through calcium-dependent signaling pathways. Biomed Res Int 2015:965271CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moccia F, Berra-Romani R, Tritto S, Signorelli S, Taglietti V, Tanzi F (2003) Epidermal growth factor induces intracellular Ca2+ oscillations in microvascular endothelial cells. J Cell Physiol 194:139–150CrossRefPubMedGoogle Scholar
  13. 13.
    Munaron L, Fiorio Pla A (2000) Calcium influx induced by activation of tyrosine kinase receptors in cultured bovine aortic endothelial cells. J Cell Physiol 185(3):454–463CrossRefPubMedGoogle Scholar
  14. 14.
    Yokota Y, Nakajima H, Wakayama Y, Muto A, Kawakami K, Fukuhara S et al (2015) Endothelial Ca2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo. Elife 4:e08817CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sameermahmood Z, Balasubramanyam M, Saravanan T, Rema M (2008) Curcumin modulates SDF-1alpha/CXCR4-induced migration of human retinal endothelial cells (HRECs). Invest Ophthalmol Vis Sci 49(8):3305–3311CrossRefPubMedGoogle Scholar
  16. 16.
    Fiorio Pla A, Gkika D (2013) Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 4:311CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Antoniotti S, Lovisolo D, Fiorio Pla A, Munaron L (2002) Expression and functional role of bTRPC1 channels in native endothelial cells. FEBS Lett 510(3):189–195CrossRefPubMedGoogle Scholar
  18. 18.
    Moccia F, Poletto V (2015) May the remodeling of the Ca(2)(+) toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? Biochim Biophys Acta 1853(9):1958–1973CrossRefGoogle Scholar
  19. 19.
    Moccia F, Guerra G (2016) Ca2+ Signalling in endothelial progenitor cells: friend or foe? J Cell Physiol 231(2):314–327CrossRefPubMedGoogle Scholar
  20. 20.
    Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martínez-Trillos A, Casetti I et al (2014) Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 124(7):1062–1069CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Poletto V, Dragoni S, Lim D, Biggiogera M, Aronica A, Cinelli M et al (2016) Endoplasmic reticulum Ca2+ handling and apoptotic resistance in tumor-derived endothelial colony forming cells. J Cell Biochem 117(10):2260–2271CrossRefPubMedGoogle Scholar
  22. 22.
    Moccia F, Berra-Romani R, Tanzi F (2012) Update on vascular endothelial Ca2+ signalling: a tale of ion channels, pumps and transporters. World J Biol Chem 3(7):127–158CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Berra-Romani R, Raqeeb A, Guzman-Silva A, Torres-Jacome J, Tanzi F, Moccia F (2010) Na+-Ca2+ exchanger contributes to Ca2+ extrusion in ATP-stimulated endothelium of intact rat aorta. Biochem Biophys Res Commun 395(1):126–130CrossRefPubMedGoogle Scholar
  24. 24.
    Maeng YS, Choi HJ, Kwon JY, Park YW, Choi KS, Min JK et al (2009) Endothelial progenitor cell homing: prominent role of the IGF2-IGF2R-PLCbeta2 axis. Blood 113(1):233–243CrossRefPubMedGoogle Scholar
  25. 25.
    Zuccolo E, Di Buduo C, Lodola F, Orecchioni S, Scarpellino G, Kheder DA et al (2018) Stromal cell-derived factor-1alpha promotes endothelial colony-forming cell migration through the Ca2+-dependent activation of the extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/AKT pathways. Stem Cells Dev 27(1):23–34CrossRefPubMedGoogle Scholar
  26. 26.
    Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Berra-Romani R et al (2011) Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2+ concentration. Stem Cells 29(11):1898–1907CrossRefPubMedGoogle Scholar
  27. 27.
    Sanchez-Hernandez Y, Laforenza U, Bonetti E, Fontana J, Dragoni S, Russo M et al (2010) Store-operated Ca2+ entry is expressed in human endothelial progenitor cells. Stem Cells Dev 19(12):1967–1981CrossRefPubMedGoogle Scholar
  28. 28.
    Zuccolo E, Dragoni S, Poletto V, Catarsi P, Guido D, Rappa A et al (2016) Arachidonic acid-evoked Ca2+ signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vasc Pharmacol 87:159–171CrossRefGoogle Scholar
  29. 29.
    Morgan AJ, Platt FM, Lloyd-Evans E, Galione A (2011) Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 439(3):349–374CrossRefGoogle Scholar
  30. 30.
    Di Nezza F, Zuccolo E, Poletto V, Rosti V, De Luca A, Moccia F et al (2017) Liposomes as a putative tool to investigate NAADP signaling in vasculogenesis. J Cell Biochem 118: 3722–3729CrossRefPubMedGoogle Scholar
  31. 31.
    Wang YW, Zhang JH, Yu Y, Yu J, Huang L (2016) Inhibition of store-operated calcium entry protects endothelial progenitor cells from H2O2-induced apoptosis. Biomol Ther (Seoul) 24(4):371–379CrossRefGoogle Scholar
  32. 32.
    Choi JW, Son SM, Mook-Jung I, Moon YJ, Lee JY, Wang KC et al (2017) Mitochondrial abnormalities related to the dysfunction of circulating endothelial colony-forming cells in moyamoya disease. J Neurosurg 129:1–9Google Scholar
  33. 33.
    Kluge MA, Fetterman JL, Vita JA (2013) Mitochondria and endothelial function. Circ Res 112(8):1171–1188CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Moccia F, Dragoni S, Lodola F, Bonetti E, Bottino C, Guerra G et al (2012) Store-dependent Ca2+ entry in endothelial progenitor cells as a perspective tool to enhance cell-based therapy and adverse tumour vascularization. Curr Med Chem 19(34):5802–5818CrossRefPubMedGoogle Scholar
  35. 35.
    Lodola F, Laforenza U, Bonetti E, Lim D, Dragoni S, Bottino C et al (2012) Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One 7(9):e42541CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li J, Cubbon RM, Wilson LA, Amer MS, McKeown L, Hou B et al (2011) Orai1 and CRAC channel dependence of VEGF-activated Ca2+ entry and endothelial tube formation. Circ Res 108(10):1190–1198CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Di Buduo CA, Balduini A, Moccia F (2016) Pathophysiological significance of store-operated calcium entry in megakaryocyte function: opening new paths for understanding the role of calcium in thrombopoiesis. Int J Mol Sci 17(12):2055CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283(37):25296–25304CrossRefGoogle Scholar
  39. 39.
    Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca(2)+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca(2)+ signals required for specific cell functions. PLoS Biol 9(3):e1001025CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pani B, Liu X, Bollimuntha S, Cheng KT, Niesman IR, Zheng C et al (2013) Impairment of TRPC1-STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1. J Cell Sci 126(Pt 2):667–675CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hong JH, Li Q, Kim MS, Shin DM, Feske S, Birnbaumer L et al (2011) Polarized but differential localization and recruitment of STIM1, Orai1 and TRPC channels in secretory cells. Traffic 12(2):232–245CrossRefPubMedGoogle Scholar
  42. 42.
    Du LL, Shen Z, Li Z, Ye X, Wu M, Hong L et al (2018) TRPC1 deficiency impairs the endothelial progenitor cell function via inhibition of calmodulin/eNOS pathway. J Cardiovasc Transl Res 11:339–345CrossRefPubMedGoogle Scholar
  43. 43.
    Zuccolo E, Bottino C, Diofano F, Poletto V, Codazzi AC, Mannarino S et al (2016) Constitutive store-operated Ca2+ entry leads to enhanced nitric oxide production and proliferation in infantile hemangioma-derived endothelial Colony-forming cells. Stem Cells Dev 25(4):301–319CrossRefPubMedGoogle Scholar
  44. 44.
    Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2(10):a003962CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Guerra G, Lucariello A, Perna A, Botta L, De Luca A, Moccia F (2018) The role of endothelial Ca2+ signaling in neurovascular coupling: a view from the lumen. Int J Mol Sci 19(4).  https://doi.org/10.3390/ijms19040938
  46. 46.
    Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO (2008) VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation 15(7):605–614CrossRefPubMedGoogle Scholar
  47. 47.
    Antigny F, Girardin N, Frieden M (2012) Transient receptor potential canonical channels are required for in vitro endothelial tube formation. J Biol Chem 287(8):5917–5927CrossRefGoogle Scholar
  48. 48.
    Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Guerra G et al (2013) Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev 22(19):2561–2580CrossRefPubMedGoogle Scholar
  49. 49.
    Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75(6):1262–1279CrossRefPubMedGoogle Scholar
  50. 50.
    Hofmann NA, Barth S, Waldeck-Weiermair M, Klec C, Strunk D, Malli R et al (2014) TRPV1 mediates cellular uptake of anandamide and thus promotes endothelial cell proliferation and network-formation. Biol Open 3(12):1164–1172CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    White JP, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I (2016) TRPV4: molecular conductor of a diverse orchestra. Physiol Rev 96(3):911–973CrossRefPubMedGoogle Scholar
  52. 52.
    Dragoni S, Guerra G, Fiorio Pla A, Bertoni G, Rappa A, Poletto V et al (2015) A functional transient receptor potential vanilloid 4 (TRPV4) channel is expressed in human endothelial progenitor cells. J Cell Physiol 230(1):95–104CrossRefPubMedGoogle Scholar
  53. 53.
    Fleig A, Chubanov V (2014) Trpm7. Handb Exp Pharmacol 222:521–546CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Baldoli E, Maier JA (2012) Silencing TRPM7 mimics the effects of magnesium deficiency in human microvascular endothelial cells. Angiogenesis 15(1):47–57CrossRefPubMedGoogle Scholar
  55. 55.
    Tu TC, Nagano M, Yamashita T, Hamada H, Ohneda K, Kimura K et al (2016) A chemokine receptor, CXCR4, which is regulated by hypoxia-inducible factor 2alpha, is crucial for functional endothelial progenitor cells migration to ischemic tissue and wound repair. Stem Cells Dev 25(3):266–276CrossRefPubMedGoogle Scholar
  56. 56.
    Oh BJ, Kim DK, Kim BJ, Yoon KS, Park SG, Park KS et al (2010) Differences in donor CXCR4 expression levels are correlated with functional capacity and therapeutic outcome of angiogenic treatment with endothelial colony forming cells. Biochem Biophys Res Commun 398(4):627–633CrossRefPubMedGoogle Scholar
  57. 57.
    Joo HJ, Song S, Seo HR, Shin JH, Choi SC, Park JH et al (2015) Human endothelial colony forming cells from adult peripheral blood have enhanced sprouting angiogenic potential through up-regulating VEGFR2 signaling. Int J Cardiol 197:33–43CrossRefPubMedGoogle Scholar
  58. 58.
    Su SH, Wu CH, Chiu YL, Chang SJ, Lo HH, Liao KH et al (2017) Dysregulation of vascular endothelial growth factor receptor-2 by multiple miRNAs in endothelial colony-forming cells of coronary artery disease. J Vasc Res 54(1):22–32CrossRefPubMedGoogle Scholar
  59. 59.
    Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Potenza DM, Guerra G, Avanzato D, Poletto V, Pareek S, Guido D et al (2014) Hydrogen sulphide triggers VEGF-induced intracellular Ca2+ signals in human endothelial cells but not in their immature progenitors. Cell Calcium 56:225–234CrossRefPubMedGoogle Scholar
  61. 61.
    Zhu L, Song S, Pi Y, Yu Y, She W, Ye H et al (2011) Cumulated Ca2(+) spike duration underlies Ca2(+) oscillation frequency-regulated NFkappaB transcriptional activity. J Cell Sci 124(Pt 15):2591–2601CrossRefPubMedGoogle Scholar
  62. 62.
    Zhu LP, Luo YG, Chen TX, Chen FR, Wang T, Hu Q (2008) Ca2+ oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells. J Cell Sci 121(15):2511–2518CrossRefPubMedGoogle Scholar
  63. 63.
    Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7(8):758–765CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1(4):a000034CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760CrossRefPubMedGoogle Scholar
  66. 66.
    Moccia F, Lucariello A, Guerra G (2018) TRPC3-mediated Ca2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: the role of autologous endothelial colony forming cells. J Cell Physiol 233(5):3901–3917CrossRefPubMedGoogle Scholar
  67. 67.
    Monteith GR, Prevarskaya N, Roberts-Thomson SJ (2017) The calcium-cancer signalling nexus. Nat Rev Cancer 17(6):367–380CrossRefPubMedGoogle Scholar
  68. 68.
    Prevarskaya N, Ouadid-Ahidouch H, Skryma R, Shuba Y (2014) Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos Trans R Soc Lond Ser B Biol Sci 369(1638):20130097CrossRefGoogle Scholar
  69. 69.
    Moccia F (2018) Endothelial Ca2+ signaling and the resistance to anticancer treatments: partners in crime. Int J Mol Sci 19(1):E217CrossRefPubMedGoogle Scholar
  70. 70.
    Pupo E, Pla AF, Avanzato D, Moccia F, Cruz JE, Tanzi F et al (2011) Hydrogen sulfide promotes calcium signals and migration in tumor-derived endothelial cells. Free Radic Biol Med 51(9):1765–1773CrossRefPubMedGoogle Scholar
  71. 71.
    Fiorio Pla A, Ong HL, Cheng KT, Brossa A, Bussolati B, Lockwich T et al (2012) TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene 31(2):200–212CrossRefPubMedGoogle Scholar
  72. 72.
    Avanzato D, Genova T, Fiorio Pla A, Bernardini M, Bianco S, Bussolati B et al (2016) Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling. Sci Rep 6:32602CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Fiorio Pla A, Grange C, Antoniotti S, Tomatis C, Merlino A, Bussolati B et al (2008) Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis. Mol Cancer Res 6(4):535–545CrossRefPubMedGoogle Scholar
  74. 74.
    Genova T, Grolez GP, Camillo C, Bernardini M, Bokhobza A, Richard E et al (2017) TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1. J Cell Biol 216(7):2107–2130CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Moccia F, Fotia V, Tancredi R, Della Porta MG, Rosti V, Bonetti E et al (2017) Breast and renal cancer-derived endothelial colony forming cells share a common gene signature. Eur J Cancer 77:155–164CrossRefPubMedGoogle Scholar
  76. 76.
    Lodola F, Laforenza U, Cattaneo F, Ruffinatti FA, Poletto V, Massa M et al (2017) VEGF-induced intracellular Ca2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget 8:95223–95246CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sunryd JC, Cheon B, Graham JB, Giorda KM, Fissore RA, Hebert DN (2014) TMTC1 and TMTC2 are novel endoplasmic reticulum tetratricopeptide repeat-containing adapter proteins involved in calcium homeostasis. J Biol Chem 289(23):16085–16099CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Vanoverberghe K, Vanden Abeele F, Mariot P, Lepage G, Roudbaraki M, Bonnal JL et al (2004) Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ 11(3):321–330CrossRefPubMedGoogle Scholar
  79. 79.
    Moccia F, Dragoni S, Poletto V, Rosti V, Tanzi F, Ganini C et al (2014) Orai1 and transient receptor potential channels as novel molecular targets to impair tumor neovascularisation in renal cell carcinoma and other malignancies. Anti Cancer Agents Med Chem 14(2):296–312CrossRefGoogle Scholar
  80. 80.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Greenberger S, Bischoff J (2013) Pathogenesis of infantile haemangioma. Br J Dermatol 169(1):12–19CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Grzesik P, Wu JK (2017) Current perspectives on the optimal management of infantile hemangioma. Pediatr Health Med Ther 8:107–116CrossRefGoogle Scholar
  83. 83.
    Bischoff J (2009) Progenitor cells in infantile hemangioma. J Craniofac Surg 20(Suppl 1):695–697CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Zuccolo E, Lim D, Kheder DA, Perna A, Catarsi P, Botta L et al (2017) Acetylcholine induces intracellular Ca2+ oscillations and nitric oxide release in mouse brain endothelial cells. Cell Calcium 66:33–47CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Moccia F, Berra-Romani R, Baruffi S, Spaggiari S, Adams DJ, Taglietti V et al (2002) Basal nonselective cation permeability in rat cardiac microvascular endothelial cells. Microvasc Res 64(2):187–197CrossRefPubMedGoogle Scholar
  86. 86.
    Ma X, Chen Z, Hua D, He D, Wang L, Zhang P et al (2014) Essential role for TrpC5-containing extracellular vesicles in breast cancer with chemotherapeutic resistance. Proc Natl Acad Sci U S A 111(17):6389–6394CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Plummer PN, Freeman R, Taft RJ, Vider J, Sax M, Umer BA et al (2013) MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells. Cancer Res 73(1):341–352CrossRefPubMedGoogle Scholar
  88. 88.
    Katoh M (2013) Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (review). Int J Mol Med 32(4):763–767CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Chang TY, Tsai WC, Huang TS, Su SH, Chang CY, Ma HY et al (2017) Dysregulation of endothelial colony-forming cell function by a negative feedback loop of circulating miR-146a and -146b in cardiovascular disease patients. PLoS One 12(7):e0181562CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Rosti V, Bonetti E, Bergamaschi G, Campanelli R, Guglielmelli P, Maestri M et al (2010) High frequency of endothelial colony forming cells marks a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis. PLoS One 5(12):e15277CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Barosi G, Rosti V, Massa M, Viarengo GL, Pecci A, Necchi V et al (2004) Spleen neoangiogenesis in patients with myelofibrosis with myeloid metaplasia. Br J Haematol 124(5):618–625CrossRefPubMedGoogle Scholar
  92. 92.
    Szuber N, Tefferi A (2018) Driver mutations in primary myelofibrosis and their implications. Curr Opin Hematol 25(2):129–135CrossRefPubMedGoogle Scholar
  93. 93.
    Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E, Krause KH et al (1999) Calreticulin is essential for cardiac development. J Cell Biol 144(5):857–868CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Fasolato C, Pizzo P, Pozzan T (1998) Delayed activation of the store-operated calcium current induced by calreticulin overexpression in RBL-1 cells. Mol Biol Cell 9(6):1513–1522CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    John LM, Lechleiter JD, Camacho P (1998) Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol 142(4):963–973CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369(25):2379–2390CrossRefPubMedGoogle Scholar
  97. 97.
    Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C et al (2016) Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 30(2):431–438CrossRefPubMedGoogle Scholar
  98. 98.
    Piaggio G, Rosti V, Corselli M, Bertolotti F, Bergamaschi G, Pozzi S et al (2009) Endothelial colony-forming cells from patients with chronic myeloproliferative disorders lack the disease-specific molecular clonality marker. Blood 114(14):3127–3130CrossRefPubMedGoogle Scholar
  99. 99.
    Dragoni S, Laforenza U, Bonetti E, Reforgiato M, Poletto V, Lodola F et al (2014) Enhanced expression of Stim, orai, and TRPC transcripts and proteins in endothelial progenitor cells isolated from patients with primary myelofibrosis. PLoS One 9(3):e91099CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 106(9):3202–3206CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Dragoni S, Reforgiato M, Zuccolo E, Poletto V, Lodola F, Ruffinatti FA et al (2015) Dysregulation of VEGF-induced proangiogenic Ca2+ oscillations in primary myelofibrosis-derived endothelial colony-forming cells. Exp Hematol 43(12):1019–30 e3CrossRefPubMedGoogle Scholar
  102. 102.
    Moccia F, Dragoni S, Cinelli M, Montagnani S, Amato B, Rosti V et al (2013) How to utilize Ca2+ signals to rejuvenate the repairative phenotype of senescent endothelial progenitor cells in elderly patients affected by cardiovascular diseases: a useful therapeutic support of surgical approach? BMC Surg 13(Suppl 2):S46CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Wang LY, Zhang JH, Yu J, Yang J, Deng MY, Kang HL et al (2015) Reduction of store-operated Ca2+ entry correlates with endothelial progenitor cell dysfunction in atherosclerotic mice. Stem Cells Dev 24(13):1582–1590CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”University of PaviaPaviaItaly

Personalised recommendations