Advertisement

Calcium Regulation of Bacterial Virulence

  • Michelle M. King
  • Biraj B. Kayastha
  • Michael J. Franklin
  • Marianna A. PatrauchanEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1131)

Abstract

Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution of signaling pathways, enabling cellular communications and responsiveness to both the intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another complication arises when bacterial pathogens invade a host and become exposed to different levels of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune responses to bacterial infections, and (3) become impaired during diseases. The invading pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in regulating main events of host colonization and bacterial virulence, and (3) the molecular mechanisms of Ca2+ signaling in bacterial pathogens.

Keywords

Calcium signaling Calcium channels Calcium sensors Toxins Adhesins Biofilm Attachment Two component regulatory systems Secretion Bacterial pathogens 

References

  1. 1.
    Edel KH, Kudla J (2015) Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium 57(3):231–246PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Permyakov EA, Kretsinger RH (2009) Cell signaling, beyond cytosolic calcium in eukaryotes. J Inorg Biochem 103(1):77–86PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Clapham DE (1995) Calcium signaling. Cell 80(2):259–268PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bush DS, Jones RL (1990) Measuring intracellular Ca2+ levels in plant cells using the fluorescent probes, Indo-1 and Fura-2: progress and prospects. Plant Physiol 93(3):841–845PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bose J et al (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:85PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Von Ruecker AA, Bertele R, Harms HK (1984) Calcium metabolism and cystic fibrosis: mitochondrial abnormalities suggest a modification of the mitochondrial membrane. Pediatr Res 18(7):594CrossRefGoogle Scholar
  7. 7.
    Aris RM et al (1999) Altered calcium homeostasis in adults with cystic fibrosis. Osteoporos Int 10(2):102–108PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ceder O, Roomans G, Hösli P (1982) Increased calcium content in cultured fibroblasts from trisomy patients: comparison with cystic fibrosis fibroblasts. Scan Electron Microsc 1982(Pt 2):723–730Google Scholar
  9. 9.
    Roomans GM (1986) Calcium and cystic fibrosis. Scan Electron Microsc 1986(Pt 1):165–178Google Scholar
  10. 10.
    Gewirtz AT et al (2000) Salmonella typhimurium induces epithelial IL-8 expression via Ca2+−mediated activation of the NF-κB pathway. J Clin Invest 105(1):79–92PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Smith DJ et al (2014) Elevated metal concentrations in the CF airway correlate with cellular injury and disease severity. J Cyst Fibros 13(3):289–295PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Büchau AS, Gallo RL (2007) Innate immunity and antimicrobial defense systems in psoriasis. Clin Dermatol 25(6):616–624PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33(7):637–668PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Pace J, Hayman MJ, Galán JE (1993) Signal transduction and invasion of epithelial cells by S. Typhimurium. Cell 72(4):505–514PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gekara NO et al (2007) The multiple mechanisms of Ca2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Cell Microbiol 9(8):2008–2021PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hu Y et al (2011) Structures of Anabaena calcium-binding protein CcbP INSIGHTS INTO CA2+ SIGNALING DURING HETEROCYST DIFFERENTIATION. J Biol Chem 286(14):12381–12388PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Asmat TM et al (2011) Streptococcus pneumoniae infection of host epithelial cells via polymeric immunoglobulin receptor transiently induces calcium release from intracellular stores. J Biol Chem 286(20):17861–17869PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nhieu GT et al (2004) Calcium signalling during cell interactions with bacterial pathogens. Biol Cell 96(1):93–101CrossRefGoogle Scholar
  19. 19.
    Khan NA et al (2007) FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell Microbiol 9(1):169–178PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Eichstaedt S et al (2009) Effects of Staphylococcus aureus-hemolysin a on calcium signalling in immortalized human airway epithelial cells. Cell Calcium 45(2):165–176PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Denning GM et al (1998) Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells. Am J Phys Lung Cell Mol Phys 274(6):L893–L900Google Scholar
  22. 22.
    Schwarzer C et al (2010) Pseudomonas aeruginosa homoserine lactone activates store-operated cAMP and cystic fibrosis transmembrane regulator-dependent cl− secretion by human airway epithelia. J Biol Chem 285(45):34850–34863PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Forsen S, Kordel J (1994) Calcium in biological systems. University Science Books, Mill Valley, CA, p 107Google Scholar
  24. 24.
    Vikström E et al (2010) Role of calcium signalling and phosphorylations in disruption of the epithelial junctions by Pseudomonas aeruginosa quorum sensing molecule. Eur J Cell Biol 89(8):584–597PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Werthén M, Lundgren T (2001) Intracellular Ca2+ mobilization and kinase activity during acylated homoserine lactone-dependent quorum sensing in Serratia liquefaciens. J Biol Chem 276(9):6468–6472PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Maroudas A (1979) Physicochemical properties of articular cartilage. In: Freeman MAS (ed) Adult articular cartilage. Pitman Medical, Tunbridge Wells, pp 215–290Google Scholar
  27. 27.
    Prohaska C, Pomazal K, Steffan I (2000) Determination of ca, mg, Fe, cu, and Zn in blood fractions and whole blood of humans by ICP-OES. Fresenius J Anal Chem 367(5):479–484PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Baker S, Worthley L (2002) The essentials of calcium, magnesium and phosphate metabolism: part I. Physiology. Critical care and. Resuscitation 4:301–306Google Scholar
  29. 29.
    Oreskes I et al (1968) Measurement of ionized calcium in human plasma with a calcium selective electrode. Clin Chim Acta 21(3):303–313PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sava L et al (2005) Serum calcium measurement: total versus free (ionized) calcium. Indian J Clin Biochem 20(2):158–161PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Moore EW (1970) Ionized calcium in normal serum, ultrafiltrates, and whole blood determined by ion-exchange electrodes. J Clin Invest 49(2):318–334PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Schwartz H, McConville B, Christopherson E (1971) Serum ionized calcium by specific ion electrode. Clin Chim Acta 31(1):97–107PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Reinhart RA (1988) Magnesium metabolism: a review with special reference to the relationship between intracellular content and serum levels. Arch Intern Med 148(11):2415–2420PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Fanconi A, Rose GA (1958) The ionized, complexed, and protein-bound fractions of calcium in plasma: an investigation of patients with various diseases which affect calcium metabolism, with an additional study of the role of calcium ions in the prevention of tetany. Q J Med 27:463–494PubMedPubMedCentralGoogle Scholar
  35. 35.
    Fiyaz M et al (2013) Association of salivary calcium, phosphate, pH and flow rate on oral health: a study on 90 subjects. J Ind Soc Periodontol 17(4):454CrossRefGoogle Scholar
  36. 36.
    Blomfield J, Warton KL, Brown J (1973) Flow rate and inorganic components of submandibular saliva in cystic fibrosis. Arch Dis Child 48(4):267–274PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chernick WS, Barbero GJ, Parkins FM (1961) Studies on submaxillary saliva in cystic fibrosis. J Pediatr 59(6):890–898PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Marmar J, Barbero GJ, Sibinga MS (1966) The pattern of parotid gland secretion in cystic fibrosis of the pancreas. Gastroenterology 50(4):551–556PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Blomfield J et al (1976) Parotid gland function in children with cystic fibrosis and child control subjects. Pediatr Res 10(6):574PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Moreira A et al (2009) Flow rate, pH and calcium concentration of saliva of children and adolescents with type 1 diabetes mellitus. Braz J Med Biol Res 42(8):707–711PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Agha-Hosseini F, Dizgah IM, Amirkhani S (2006) The composition of unstimulated whole saliva of healthy dental students. J Contemp Dent Pract 7(2):104–111PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Halmerbauer G et al (2000) The relationship of eosinophil granule proteins to ions in the sputum of patients with cystic fibrosis. Clin Exp Allergy 30(12):1771–1776PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lorin MI, Gaerlan PF, Mandel ID (1972) Quantitative composition of nasal secretions in normal subjects. J Lab Clin Med 80(2):275–281PubMedPubMedCentralGoogle Scholar
  44. 44.
    Lorin M et al (1976) Composition of nasal secretion in patients with cystic fibrosis. J Lab Clin Med 88(1):114–117PubMedPubMedCentralGoogle Scholar
  45. 45.
    Taylor EN, Curhan GC (2007) Differences in 24-hour urine composition between black and white women. J Am Soc Nephrol 18(2):654–659PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Nemchinov LG, Shabala L, Shabala S (2008) Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae. Plant Cell Physiol 49(1):40–46PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Grant M et al (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23(4):441–450PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zhang L, Du L, Poovaiah B (2014) Calcium signaling and biotic defense responses in plants. Plant Signal Behav 9(11):e973818PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ma W, Berkowitz GA (2007) The grateful dead: calcium and cell death in plant innate immunity. Cell Microbiol 9(11):2571–2585PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108CrossRefGoogle Scholar
  51. 51.
    Sauer K (2003) The genomics and proteomics of biofilm formation. Genome Biol 4(6):219PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    van Loosdrecht MC et al (1990) Influence of interfaces on microbial activity. Microbiol Rev 54(1):75–87PubMedPubMedCentralGoogle Scholar
  53. 53.
    Cruz LF, Cobine PA, De La Fuente L (2012) Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility. Appl Environ Microbiol 78(5):1321–1331PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Romantschuk M (1992) Attachment of plant pathogenic bacteria to plant surfaces. Annu Rev Phytopathol 30(1):225–243PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Yamaguchi T et al (2009) Gene cloning and characterization of Streptococcus intermedius fimbriae involved in saliva-mediated aggregation. Res Microbiol 160(10):809–816PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kerchove AJ, Elimelech M (2008) Calcium and magnesium cations enhance the adhesion of motile and nonmotile pseudomonas aeruginosa on alginate films. Langmuir 24(7):3392–3399PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Johnson MD et al (2011) Pseudomonas aeruginosa PilY1 binds integrin in an RGD-and calcium-dependent manner. PLoS One 6(12):e29629PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Williams TC, Ayrapetyan M, Oliver JD (2015) Molecular and physical factors that influence attachment of Vibrio vulnificus to chitin. Appl Environ Microbiol 81(18):6158–6165PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cheng Y et al (2013) Mutation of the conserved calcium-binding motif in Neisseria gonorrhoeae PilC1 impacts adhesion but not piliation. Infect Immun 81(11):4280–4289PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Orans J et al (2010) Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility. Proc Natl Acad Sci U S A 107(3):1065–1070PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Eto DS et al (2008) Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell Microbiol 10(12):2553–2567PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Barbu EM et al (2014) SdrC induces staphylococcal biofilm formation through a homophilic interaction. Mol Microbiol 94(1):172–185PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Josefsson E et al (1998) The binding of calcium to the B-repeat segment of SdrD, a cell surface protein of Staphylococcus aureus. J Biol Chem 273(47):31145–31152PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kumar S, Spiro S (2017) Environmental and genetic determinants of biofilm formation in Paracoccus denitrificans. mSphere 2(5):e00350-17PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Linhartova I et al (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34(6):1076–1112PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Niemann HH, Schubert W-D, Heinz DW (2004) Adhesins and invasins of pathogenic bacteria: a structural view. Microbes Infect 6(1):101–112PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Martínez-Gil M et al (2012) Calcium causes multimerization of the large adhesin LapF and modulates biofilm formation by Pseudomonas putida. J Bacteriol 194(24):6782–6789PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M (2010) LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77(3):549–561PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Espinosa-Urgel M, Salido A, Ramos J-L (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182(9):2363–2369PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rose RK (2000) The role of calcium in oral streptococcal aggregation and the implications for biofilm formation and retention. BBA-Gen Subjects 1475(1):76–82CrossRefGoogle Scholar
  71. 71.
    Korstgens V et al (2001) Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol 43(6):49–57PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Das T et al (2014) Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. PLoS One 9(3):e91935PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sarkisova S et al (2005) Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 187(13):4327–4337PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Das T, Manefield M (2012) Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One 7(10):e46718PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Jung CJ et al (2017) AtlA mediates extracellular DNA release, which contributes to Streptococcus mutans biofilm formation in an experimental rat model of infective endocarditis. Infect Immun 85(9):pii: e00252-17CrossRefGoogle Scholar
  76. 76.
    Safari A et al (2014) The significance of calcium ions on Pseudomonas fluorescens biofilms - a structural and mechanical study. Biofouling 30(7):859–869PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Haque MM et al (2017) CytR homolog of Pectobacterium carotovorum subsp. carotovorum controls air-liquid biofilm formation by regulating multiple genes involved in cellulose production, c-di-GMP signaling, motility, and type III secretion system in response to nutritional and environmental signals. Front Microbiol 8:972PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Vozza NF et al (2016) A rhizobium leguminosarum CHDL- (cadherin-like-) Lectin participates in assembly and remodeling of the biofilm matrix. Front Microbiol 7:1608PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Patrauchan MA et al (2005) Calcium influences cellular and extracellular product formation during biofilm-associated growth of a marine Pseudoalteromonas sp. Microbiology-Sgm 151:2885–2897CrossRefGoogle Scholar
  80. 80.
    Theunissen S et al (2010) The 285 kDa bap/RTX hybrid cell surface protein (SO4317) of Shewanella oneidensis MR-1 is a key mediator of biofilm formation. Res Microbiol 161(2):144–152PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Parker JK et al (2016) Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures. Environ Microbiol 18(5):1620–1634PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Hay AJ et al (2017) Calcium enhances bile salt-dependent virulence activation in Vibrio cholerae. Infect Immun 85(1):pii: e00707-16CrossRefGoogle Scholar
  83. 83.
    Tischler AH et al (2018) Discovery of calcium as a biofilm-promoting signal for Vibrio fischeri reveals new phenotypes and underlying regulatory complexity. J Bacteriol 200(15):pii: e00016-18CrossRefGoogle Scholar
  84. 84.
    Fishman MR et al (2018) Ca2+-induced two-component system CvsSR regulates the type III secretion system and the Extracytoplasmic function sigma factor AlgU in Pseudomonas syringae pv. Tomato DC3000. J Bacteriol 200(5):e00538-17PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Arrizubieta MJ et al (2004) Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus. J Bacteriol 186(22):7490–7498PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bilecen K, Yildiz FH (2009) Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environ Microbiol 11(8):2015–2029PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Watnick PI et al (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39(2):223–235PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    O'Connell DP et al (1998) The fibrinogen-binding MSCRAMM (clumping factor) of Staphylococcus aureus has a Ca2+−dependent inhibitory site. J Biol Chem 273(12):6821–6829PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Eidhin DN et al (1998) Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30(2):245–257CrossRefGoogle Scholar
  90. 90.
    Abraham NM, Jefferson KK (2012) Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. Microbiology 158(Pt 6):1504–1512PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551(7680):313–320PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Wilson J, Schurr M, LeBlanc C (2002) Mechanisms of bacterial pathogenicity. Postgrad Med J 78:216–224PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ribet D, Cossart P (2015) How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 17(3):173–183PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Olson JC, Ohman DE (1992) 1992, Efficient production and processing of elastase and LasA by Pseudomonas aeruginosa require zinc and calcium ions. J Bacteriol 174:4140–4147PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zhang L, Conway JF, Thibodeau PH (2012) Calcium-induced folding and stabilization of the Pseudomonas aeruginosa alkaline protease. J Biol Chem 287(6):4311–4322PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Marquart ME et al (2005) Calcium and magnesium enhance the production of Pseudomonas aeruginosa protease IV, a corneal virulence factor. Med Microbiol Immunol 194(1-2):39–45PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Thayer M, Flaherty KM, McKay DB (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-a resolution. J Biol Chem 266(5):2864–2871PubMedPubMedCentralGoogle Scholar
  99. 99.
    Casilag F et al (2016) The LasB elastase of Pseudomonas aeruginosa acts in concert with alkaline protease AprA to prevent flagellin-mediated immune recognition. Infect Immun 84(1):162–171PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Laarman AJ et al (2012) Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J Immunol 188(1):386–393PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Hall S et al (2016) Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 8(8):236PubMedCentralCrossRefGoogle Scholar
  102. 102.
    Rada B, Leto TL (2011) The redox-active Pseudomonas virulence factor pyocyanin induces formation of neutrophil extracellular traps. FASEB J 25(1 Supplement):360.1–360.1Google Scholar
  103. 103.
    Ran H, Hassett DJ, Lau GW (2003) Human targets of Pseudomonas aeruginosa pyocyanin. Proc Natl Acad Sci 100(24):14315–14320PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Boehm DF (1990) R a Welch, and I S Snyder., Calcium Is Required for Binding of Escherichia Coli Hemolysin (HlyA) to Erythrocyte Membranes. Infect Immun 58(6):1951–1958PubMedPubMedCentralGoogle Scholar
  105. 105.
    Bakas L et al (1998) Calcium-dependent conformation of E. coli α-haemolysin. Implications for the mechanism of membrane insertion and lysis. Biochim Biophys Acta 1368(2):225–234PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Hay AJ et al (2017) Calcium enhances bile salt-dependent virulence activation in Vibrio cholerae. Infect Immun 85(1):e00707–e00716PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kumar P, Ahuja N, Bhatnagar R (2002) Anthrax edema toxin requires influx of calcium for inducing cyclic AMP toxicity in target cells. Infect Immun 70(9):4997–5007PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Serezani CH et al (2008) Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol 39(2):127–132PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Flego D et al (1997) Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. Mol Microbiol 25(5):831–838PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Deng W et al (2017) Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 15(6):323–337PubMedCrossRefGoogle Scholar
  111. 111.
    Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15(1):9–21PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Filloux A (2011) Protein secretion Systems in Pseudomonas aeruginosa: an essay on diversity, evolution, and function. Front Microbiol 2:155PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Baumann U et al (1993) Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 12(9):3357–3364PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Duong F et al (1992) Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene 121:47–54PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kessler E et al (1993) Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 268(10):7503–7508PubMedPubMedCentralGoogle Scholar
  116. 116.
    Thayer MM, Flaherty KM, McKay DB (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-Å resolution. J Biol Chem 266(5):2864–2871PubMedPubMedCentralGoogle Scholar
  117. 117.
    Wilderman PJ et al (2001) Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect Immun 69(9):5385–5394PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Palmer T, Berks BC (2012) The twin-arginine translocation (tat) protein export pathway. Nat Rev Microbiol 10(7):483–496PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Papanikou E, Karamanou S, Economou A (2007) Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol 5(11):839–851PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Korotkov KV et al (2009) Calcium is essential for the major pseudopilin in the type 2 secretion system. J Biol Chem 284(38):25466–25470PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Dasgupta N et al (2006) Transcriptional induction of the Pseudomonas aeruginosa type III secretion system by low Ca2+ and host cell contact proceeds through two distinct signaling pathways. Infect Immun 74(6):3334–3341PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Vallis AJ et al (1999) Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect Immun 67(2):914–920PubMedPubMedCentralGoogle Scholar
  123. 123.
    Schraidt O, Marlovits TC (2011) Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 331(6021):1192–1195PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Vakulskas CA, Brutinel ED, Yahr TL (2010) ExsA recruits RNA polymerase to an extended −10 promoter by contacting region 4.2 of sigma-70. J Bacteriol 192(14):3597–3607PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Brutinel ED, Vakulskas CA, Yahr TL (2010) ExsD inhibits expression of the Pseudomonas aeruginosa type III secretion system by disrupting ExsA self-association and DNA binding activity. J Bacteriol 192(6):1479–1486PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Broder UN, Jaeger T, Jenal U (2016) LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat Microbiol 2:16184PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Diepold A et al (2017) A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome. Nat Commun 8:15940PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312(5779):1526–1530PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106(11):4154–4159PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Allsopp LP et al (2017) RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 114(29):7707–7712PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    He X, Wang S (2014) DNA consensus sequence motif for binding response regulator PhoP, a virulence regulator of Mycobacterium tuberculosis. Biochemistry 53(51):8008–8020PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Kreamer NN, Costa F, Newman DK (2015) The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance. MBio 6(2):e02549PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Schaaf S, Bott M (2007) Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. J Bacteriol 189(14):5002–5011PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539–539PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Tamura K et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Vescovi EG et al (1997) Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg2+ and Ca2+. J Biol Chem 272(3):1440–1443PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Lesley JA, Waldburger CD (2001) Comparison of the Pseudomonas aeruginosa and Escherichia coli PhoQ sensor domains: evidence for distinct mechanisms of signal detection. J Biol Chem 276(33):30827–30833PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Cai X et al (2011) The effect of the potential PhoQ histidine kinase inhibitors on Shigella flexneri virulence. PLoS One 6(8):e23100PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Tu X et al (2006) The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in <em>Salmonella enterica</em>. Proc Natl Acad Sci 103(36):13503–13508PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Bishop RE et al (2004) Enzymology of lipid a palmitoylation in bacterial outer membranes. J Endotoxin Res 10(2):107–112PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Macfarlane EL et al (1999) PhoP–PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34(2):305–316PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Shin D et al (2006) A positive feedback loop promotes transcription surge that jump-starts <em>Salmonella</em> virulence circuit. Science 314(5805):1607–1609PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Macfarlane EL, Kwasnicka A, Hancock RE (2000) Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146(10):2543–2554PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Gooderham WJ et al (2009) The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Microbiology 155(3):699–711PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Chamnongpol S, Cromie M, Groisman EA (2003) Mg2+ sensing by the Mg2+ sensor PhoQ of Salmonella enterica. J Mol Biol 325(4):795–807PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Regelmann AG et al (2002) Mutational analysis of the Escherichia coli PhoQ sensor kinase: differences with the Salmonella enterica serovar typhimurium PhoQ protein and in the mechanism of Mg2+ and Ca2+ sensing. J Bacteriol 184(19):5468–5478PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Lesley JA, Waldburger CD (2003) Repression of Escherichia coli PhoP-PhoQ signaling by acetate reveals a regulatory role for acetyl coenzyme a. J Bacteriol 185(8):2563–2570PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Flego D et al (2000) A two-component regulatory system, pehR-pehS, controls Endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp. carotovora. Mol Plant-Microbe Interact 13(4):447–455PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Kariola T et al (2003) Erwinia carotovora subsp carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis. Mol Plant-Microbe Interact 16(3):179–187PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Palomaki T et al (2002) A putative three-dimensional targeting motif of polygalacturonase (PehA), a protein secreted through the type II (GSP) pathway in Erwinia carotovora. Mol Microbiol 43(3):585–596PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Kaneshiro WS et al (2008) Characterization of Erwinia chrysanthemi from a bacterial heart rot of pineapple outbreak in Hawaii. Plant Dis 92(10):1444–1450PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Hugouvieux-Cotte-Pattat N, Shevchik VE, Nasser W (2002) PehN, a Polygalacturonase homologue with a low hydrolase activity, is Coregulated with the other Erwinia chrysanthemi Polygalacturonases. J Bacteriol 184(10):2664–2673PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Guragain M et al (2016) The Pseudomonas aeruginosa PAO1 two-component regulator CarSR regulates calcium homeostasis and calcium-induced virulence factor production through its regulatory targets CarO and CarP. J Bacteriol 198(6):951–963PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Theodorou MC et al (2006) Involvement of the AtoS-AtoC signal transduction system in poly-(R)-3-hydroxybutyrate biosynthesis in Escherichia coli. Biochim Biophys Acta 1760(6):896–906PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Theodorou MC, Theodorou EC, Kyriakidis DA (2012) Involvement of AtoSC two-component system in Escherichia coli flagellar regulon. Amino Acids 43(2):833–844PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Theodorou MC et al (2007) Spermidine triggering effect to the signal transduction through the AtoS-AtoC/Az two-component system in Escherichia coli. Biochim Biophys Acta 1770(8):1104–1114PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Theodorou EC, Theodorou MC, Kyriakidis DA (2013) Regulation of poly-(R)-(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis by the AtoSCDAEB regulon in phaCAB(+) Escherichia coli. Appl Microbiol Biotechnol 97(12):5259–5274PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Jung C-J et al (2017) AtlA mediates extracellular DNA release, which contributes to Streptococcus mutans biofilm formation in an experimental rat model of infective endocarditis. Infect Immun 85(9):e00252–e00217PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Downey JS et al (2014) In vitro manganese-dependent cross-talk between Streptococcus mutans VicK and GcrR: implications for overlapping stress response pathways. PLoS One 9(12):e115975PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Kawasaki K (2012) Complexity of lipopolysaccharide modifications in Salmonella enterica: its effects on endotoxin activity, membrane permeability, and resistance to antimicrobial peptides. Food Res Int 45(2):493–501CrossRefGoogle Scholar
  161. 161.
    He X et al (2008) The cia operon of Streptococcus mutans encodes a unique component required for calcium-mediated autoregulation. Mol Microbiol 70(1):112–126PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Bilecen K et al (2015) Polymyxin B resistance and biofilm formation in Vibrio cholerae are controlled by the response regulator CarR. Infect Immun 83(3):1199–1209PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Kierek K, Watnick PI (2003) The <em>Vibrio cholerae</em> O139 O-antigen polysaccharide is essential for ca<sup>2+</sup>−dependent biofilm development in sea water. Proc Natl Acad Sci 100(24):14357–14362PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Kierek K, Watnick PI (2003) Environmental determinants of Vibrio cholerae biofilm development. Appl Environ Microbiol 69(9):5079–5088PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Giammarinaro P, Sicard M, Gasc AM (1999) Genetic and physiological studies of the CiaH-CiaR two-component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae. Microbiology 145(Pt 8):1859–1869PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Ibrahim YM et al (2004) Control of virulence by the two-component system CiaR/H is mediated via HtrA, a major virulence factor of Streptococcus pneumoniae. J Bacteriol 186(16):5258–5266PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Wu C et al (2010) Regulation of ciaXRH operon expression and identification of the CiaR regulon in Streptococcus mutans. J Bacteriol 192(18):4669–4679PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Jung CJ et al (2017) AtlA mediates extracellular DNA release, which contributes to Streptococcus mutans biofilm formation in an experimental rat model of infective endocarditis. Infect Immun 85(9):10CrossRefGoogle Scholar
  169. 169.
    Senadheera MD et al (2005) A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187(12):4064–4076PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Reusch R (2013) The role of short-chain conjugated poly-(R)-3-Hydroxybutyrate (cPHB) in protein folding. Int J Mol Sci 14(6):10727PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Theodorou MC, Tiligada E, Kyriakidis DA (2009) Extracellular Ca2+ transients affect poly-(R)-3-hydroxybutyrate regulation by the AtoS-AtoC system in Escherichia coli. Biochem J 417(3):667–672PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Yamamoto K et al (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280(2):1448–1456PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Rodrigue A et al (2000) Cell signalling by oligosaccharides. Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8(11):498–504PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Siryaporn A, Goulian M (2008) Cross-talk suppression between the CpxA–CpxR and EnvZ–OmpR two-component systems in E. Coli. Mol Microbiol 70(2):494–506PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Wanner BL (1992) Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria? J Bacteriol 174(7):2053PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Zhao X et al (2010) Structural basis for prokaryotic calciummediated regulation by a Streptomyces coelicolor calcium binding protein. Protein Cell 1(8):771–779PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Zhang M et al (2012) Structural basis for calmodulin as a dynamic calcium sensor. Structure 20(5):911–923PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Ikura M (1996) Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21(1):14–17PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24(1):85–116PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Zhou Y et al (2006) Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins. Proteins 65(3):643–655PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Inouye S, Franceschini T, Inouye M (1983) Structural similarities between the development-specific protein S from a gram-negative bacterium, Myxococcus xanthus, and calmodulin. Proc Natl Acad Sci 80(22):6829–6833PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Iwasa Y et al (1981) Calmodulin-like activity in the soluble fraction of Escherichia coli. Biochem Biophys Res Commun 98(3):656–660PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Kerson GW, Miernyk JA, Budd K (1984) Evidence for the occurrence of, and possible physiological role for, cyanobacterial calmodulin. Plant Physiol 75(1):222–224PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Leadlay PF, Roberts G, Walker JE (1984) Isolation of a novel calcium-binding protein from streptomyces erythreus. FEBS Lett 178(1):157–160CrossRefGoogle Scholar
  186. 186.
    Swan D et al (1989) Cloning, characterization, and heterologous expression of the Saccharopolyspora erythraea (Streptomyces erythraeus) gene encoding an EF-hand calcium-binding protein. J Bacteriol 171(10):5614–5619PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Swan DG et al (1987) A bacterial calcium-binding protein homologous to calmodulin. Nature 329(6134):84PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Yonekawa T, Ohnishi Y, Horinouchi S (2005) A calmodulin-like protein in the bacterial genus Streptomyces. FEMS Microbiol Lett 244(2):315–321PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Xi C et al (2000) Symbiosis-specific expression of rhizobium etli casA encoding a secreted calmodulin-related protein. Proc Natl Acad Sci 97(20):11114–11119PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Sarkisova SA et al (2014) A Pseudomonas aeruginosa EF-hand protein, EfhP (PA4107), modulates stress responses and virulence at high calcium concentration. PLoS One 9(6):e98985PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Scholl ZN et al (2016) Single-molecule force spectroscopy reveals the calcium dependence of the alternative conformations in the native state of a βγ-Crystallin protein. J Biol Chem 291(35):18263–18275PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Koul, S., et al., A novel calcium binding protein in Mycobacterium tuberculosis—potential target for trifluoperazine. 2009Google Scholar
  193. 193.
    Advani MJ, Rajagopalan M, Reddy PH (2014) Calmodulin-like protein from M. Tuberculosis H37Rv is required during infection. Sci Rep 4:6861PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Reddy PT et al (2003) Cloning and expression of the gene for a novel protein from Mycobacterium smegmatis with functional similarity to eukaryotic calmodulin. J Bacteriol 185(17):5263–5268PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Fry I, Becker-Hapak M, Hageman J (1991) Purification and properties of an intracellular calmodulinlike protein from Bacillus subtilis cells. J Bacteriol 173(8):2506–2513PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Nagai M et al (1994) Purification and characterization of Bordetella calmodulin-like protein. FEMS Microbiol Lett 116(2):169–174PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Vincent F et al (2010) Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand binding site. Environ Microbiol 12(6):1775–1786PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Broder UN, Jaeger T, Jenal U (2017) LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat Microbiol 2(1):16184CrossRefGoogle Scholar
  199. 199.
    Falah A et al (1988) On the presence of calmodulin-like protein in mycobacteria. FEMS Microbiol Lett 56(1):89–93CrossRefGoogle Scholar
  200. 200.
    Burra SS et al (1991) Calmodulin-like protein and the phospholipids of Mycobacterium smegmatis. FEMS Microbiol Lett 80(2-3):189–194CrossRefGoogle Scholar
  201. 201.
    Teintze M, Inouye M, Inouye S (1988) Characterization of calcium-binding sites in development-specific protein S of Myxococcus xanthus using site-specific mutagenesis. J Biol Chem 263(3):1199–1203PubMedPubMedCentralGoogle Scholar
  202. 202.
    Ryjenkov DA et al (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187(5):1792–1798PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Dominguez DC, Guragain M, Patrauchan M (2015) Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 57(3):151–165PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Dominguez DC (2004) Calcium signalling in bacteria. Mol Microbiol 54(2):291–297PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Booth IR et al (2015) The evolution of bacterial mechanosensitive channels. Cell Calcium 57(3):140–150PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Guragain M et al (2013) Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters and modulates swarming motility. Cell Calcium 54(5):350–361PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Jones HE, Holland IB, Campbell AK (2002) Direct measurement of free Ca2+ shows different regulation of Ca2+ between the periplasm and the cytosol of Escherichia coli. Cell Calcium 32(4):183–192PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Naseem R et al (2008) pH and monovalent cations regulate cytosolic free Ca2+ in E. Coli. Biochim Biophys Acta Biomembr 1778(6):1415–1422CrossRefGoogle Scholar
  209. 209.
    Knight MR et al (1991) Recombinant aequorin as a probe for cytosolic free Ca2+ in Escherichia coli. FEBS Lett 282(2):405–408PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Jones HE et al (1999) Slow changes in cytosolic free Ca2+ inEscherichia colihighlight two putative influx mechanisms in response to changes in extracellular calcium. Cell Calcium 25(3):265–274PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Campbell AK et al (2007) Fermentation product butane 2, 3-diol induces Ca2+ transients in E. Coli through activation of lanthanum-sensitive Ca2+ channels. Cell Calcium 41(2):97–106PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Bruni GN et al (2017) Voltage-gated calcium flux mediates <em>Escherichia coli</em> mechanosensation. Proc Natl Acad Sci 114(35):9445–9450PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Herbaud M-L et al (1998) Calcium signalling in Bacillus subtilis. Biochim Biophys Acta 1448(2):212–226PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Pavlov E et al (2005) A high-conductance mode of a poly-3-hydroxybutyrate/calcium/polyphosphate channel isolated from competent Escherichia coli cells. FEBS Lett 579(23):5187–5192PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Huang R, Reusch RN (1995) Genetic competence in Escherichia coli requires poly-beta-hydroxybutyrate/calcium polyphosphate membrane complexes and certain divalent cations. J Bacteriol 177(2):486–490PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Chang Y et al (2014) Structural basis for a pH-sensitive calcium leak across membranes. Science 344(6188):1131–1135PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Liu Q (2017) TMBIM-mediated Ca2+ homeostasis and cell death. BBA-Mol Cell Res 1864(6):850–857Google Scholar
  218. 218.
    Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19(10):1356–1369PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117(12):2449–2460PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Moe PC, Blount P, Kung C (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol Microbiol 28(3):583–592PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Chang G et al (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282(5397):2220–2226PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Blount P et al (1996) Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J 15(18):4798–4805PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Velasquez J et al (2014) Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel. Mol Microbiol 92(4):813–823PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Cox CD et al (2013) Selectivity mechanism of the mechanosensitive channel MscS revealed by probing channel subconducting states. Nat Commun 4:2137PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Rensing C et al (2000) CopA: an <em>Escherichia coli</em> cu(I)-translocating P-type ATPase. Proc Natl Acad Sci 97(2):652–656PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Rosch JW et al (2008) Calcium efflux is essential for bacterial survival in the eukaryotic host. Mol Microbiol 70(2):435–444PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Gupta HK, Shrivastava S, Sharma R (2017) A novel calcium uptake transporter of uncharacterized P-type ATPase family supplies calcium for cell surface integrity in Mycobacterium smegmatis. MBio 8(5):e01388-17PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    States DJ, Gish W (1994) Combined use of sequence similarity and codon bias for coding region identification. J Comput Biol 1(1):39–50PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Huang Y et al (2009) Multiple Ca2+ binding sites in the extracellular domain of Ca2+-sensing receptor corresponding to cooperative Ca2+ response. Biochemistry 48(2):388–398PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Hendy GN et al (2000) Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 16(4):281–296PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Holstein DM et al (2004) Calcium-sensing receptor-mediated ERK1/2 activation requires Gαi2 coupling and dynamin-independent receptor internalization. J Biol Chem 279(11):10060–10069PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Di Mise A et al (2018) Activation of calcium-sensing receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci Rep 8(1):5704PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Smith KA et al (2016) Calcium-sensing receptor regulates cytosolic [Ca2+] and plays a major role in the development of pulmonary hypertension. Front Physiol 7:517PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Huang Y-H et al (2016) Characterization of Staphylococcus aureus Primosomal DnaD protein: highly conserved C-terminal region is crucial for ssDNA and PriA helicase binding but not for DnaA protein-binding and self-Tetramerization. PLoS One 11(6):e0157593PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Mosyak L et al (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19(13):3179–3191PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Koskiniemi S et al (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A 110(17):7032–7037PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Drees JC et al (2006) Inhibition of RecA protein function by the RdgC protein from Escherichia coli. J Biol Chem 281(8):4708–4717PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Briggs GS et al (2007) Ring structure of the Escherichia coli DNA-binding protein RdgC associated with recombination and replication fork repair. J Biol Chem 282(17):12353–12357PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Hernández-Ochoa EO et al (2015) Critical role of intracellular RyR1 calcium release channels in skeletal muscle function and disease. Front Physiol 6:420PubMedPubMedCentralGoogle Scholar
  241. 241.
    Xu L et al (2018) G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca2+. J Biol Chem 293(6):2015–2028PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Clarke OB, Hendrickson WA (2016) Structures of the colossal RyR1 calcium Release Channel. Curr Opin Struct Biol 39:144–152PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Kane Dickson V, Pedi L, Long SB (2014) Structure and insights into the function of a Ca2+-activated Cl(−) channel. Nature 516(7530):213–218PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Yang T et al (2014) Structure and selectivity in bestrophin ion channels. Science 346(6207):355–359PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Kuo YH et al (2014) Effects of alternative splicing on the function of bestrophin-1 calcium-activated chloride channels. Biochem J 458:575–583PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Michelle M. King
    • 1
  • Biraj B. Kayastha
    • 1
  • Michael J. Franklin
    • 2
  • Marianna A. Patrauchan
    • 1
    Email author
  1. 1.Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterUSA
  2. 2.Department of Microbiology and Center for Biofilm EngineeringMontana State UniversityBozemanUSA

Personalised recommendations