Advertisement

A Statistical View on Calcium Oscillations

  • Jake Powell
  • Martin Falcke
  • Alexander Skupin
  • Tomas C. Bellamy
  • Theodore Kypraios
  • Rüdiger ThulEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1131)

Abstract

Transient rises and falls of the intracellular calcium concentration have been observed in numerous cell types and under a plethora of conditions. There is now a growing body of evidence that these whole-cell calcium oscillations are stochastic, which poses a significant challenge for modelling. In this review, we take a closer look at recently developed statistical approaches to calcium oscillations. These models describe the timing of whole-cell calcium spikes, yet their parametrisations reflect subcellular processes. We show how non-stationary calcium spike sequences, which e.g. occur during slow depletion of intracellular calcium stores or in the presence of time-dependent stimulation, can be analysed with the help of so-called intensity functions. By utilising Bayesian concepts, we demonstrate how values of key parameters of the statistical model can be inferred from single cell calcium spike sequences and illustrate what information whole-cell statistical models can provide about the subcellular mechanistic processes that drive calcium oscillations. In particular, we find that the interspike interval distribution of HEK293 cells under constant stimulation is captured by a Gamma distribution.

Keywords

Calcium spikes Bayesian inference Intensity functions Heterogeneous cell populations 

References

  1. 1.
    Berridge MJ, Galione A (1988) Cytosolic calcium oscillators. FASEB J 2:3074–3082PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Dupont G, Combettes L (2016) Fine tuning of cytosolic Ca2+ oscillations. F1000Research 5. https://f1000research.com/articles/5-2036/v1
  5. 5.
    Thul R, Bellamy TC, Roderick HL, Bootman MD, Coombes S (2008) Calcium oscillations. Adv Exp Med Biol 641:1–27PubMedPubMedCentralGoogle Scholar
  6. 6.
    Dupont G, Combettes L, Bird GS, Putney JW (2011) Calcium oscillations. Cold Spring Harb Perspect Biol 3:pii:a004226Google Scholar
  7. 7.
    Dupont G, Falcke M, Kirk V, Sneyd J (2016) Models of calcium signalling. Interdisciplinary Applied Mathematics, vol 43. Springer, ChamGoogle Scholar
  8. 8.
    Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Uhlén P, Fritz N (2010) Biochemistry of calcium oscillations. Biochem Biophys Res Commun 396:28–32PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Noren DP, Chou WH, Lee SH, Qutub AA, Warmflash A, Wagner DS et al (2016) Endothelial cells decode VEGF-mediated Ca2+ signaling patterns to produce distinct functional responses. Sci Signal 9:ra20–ra20Google Scholar
  12. 12.
    Di Capite J, Ng SW, Parekh AB (2009) Decoding of cytoplasmic Ca2+ oscillations through the spatial signature drives gene expression. Curr Biol 19:853–858PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Nunemaker CS, Bertram R, Sherman A, Tsaneva-Atanasova K, Daniel CR, Satin LS (2006) Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys J 91:2082–2096PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tse A, Tse FW, Almers W, Hille B (1993) Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science (New York, NY). 260:82–84Google Scholar
  15. 15.
    Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A et al (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−∕− mice. Proc Natl Acad Sci U S A 107:5208–5213PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tsaneva-Atanasova K, Yule DI, Sneyd J (2005) Calcium oscillations in a triplet of pancreatic acinar cells. Biophys J 88:1535–1551PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tse A, Lee AK, Tse FW (2012) Ca2+ signaling and exocytosis in pituitary corticotropes. Cell Calcium 51:253–259PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Santella L, Lim D, Moccia F (2004) Calcium and fertilization: the beginning of life. Trends Biochem Sci 29:400–408PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86:25–88PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW et al (2014) Male-female communication triggers calcium signatures during fertilization in arabidopsis. Nat Commun 5:4645PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Van Nhieu GT, Clair C, Bruzzone R, Mesnil M, Sansonetti P, Combettes L (2003) Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol 5:720–726CrossRefGoogle Scholar
  22. 22.
    Ullah G, Jung P, Machaca K (2007) Modeling Ca2+ signaling differentiation during oocyte maturation. Cell Calcium 42:556–564PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ullah G, Jung P (2006) Modeling the statistics of elementary calcium release events. Biophys J 90:3485–3495PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Shuai JW, Jung P (2003) Optimal ion channel clustering for intracellular calcium signaling. Proc Natl Acad Sci U S A 100:506–510PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shuai JW, Jung P (2002) Stochastic properties of Ca2+ release of inositol 1,4,5-trisphosphate receptor clusters. Biophys J 83:87–97PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Shuai J, Jung P (2002) Optimal intracellular calcium signaling. Phys Rev Lett 88:068102PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A 89:9895–9899PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Li Y, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol 166:461–473PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tang Y, Stephenson J, Othmer H (1996) Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics. Biophys J 70:246–263PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gaspers LD, Bartlett PJ, Politi A, Burnett P, Metzger W, Johnston J et al (2014) Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations. Cell Rep 9:1209–1218PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Politi A, Gaspers LD, Thomas J, Höfer T (2006) Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophys J 90:3120–3133PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Sun CH, Wacquier B, Aguilar DI, Carayol N, Denis K, Boucherie S et al (2017) The Shigella type III effector IpgD recodes Ca2+ signals during invasion of epithelial cells. EMBO J 36(17):2567–2580PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bessonnard S, De Mot L, Gonze D, Barriol M, Dennis C, Goldbeter A et al (2014) Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development (Cambridge, England) 141:3637–3648Google Scholar
  34. 34.
    De Caluwé J, Dupont G (2013) The progression towards Alzheimer’s disease described as a bistable switch arising from the positive loop between amyloids and Ca2+. J Theor Biol 331:12–18PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Dupont G, Lokenye EFL, Challiss RAJ (2011) A model for Ca2+ oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie 93:2132–2138PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Dupont G, Abou-Lovergne A, Combettes L (2008) Stochastic aspects of oscillatory Ca2+ dynamics in hepatocytes. Biophys J 95:2193–2202PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Swillens S, Champeil P, Combettes L, Dupont G (1998) Stochastic simulation of a single inositol 1,4,5-trisphosphate-sensitive Ca2+ channel reveals repetitive openings during ‘blip-like’ Ca2+ transients. Cell Calcium. 23:291–302PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Tran Van Nhieu G, Kai Liu B, Zhang J, Pierre F, Prigent S, Sansonetti P et al (2013) Actin-based confinement of calcium responses during Shigella invasion. Nat Commun 4:1567PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Salazar C, Zaccaria Politi A, Höfer T (2008) Decoding of calcium oscillations by phosphorylation cycles: analytic results. Biophys J 94:1203–1215PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kummer U, Olsen LF, Dixon CJ, Green AK, Bornberg-Bauer E, Baier G (2000) Switching from simple to complex oscillations in calcium signaling. Biophys J 79:1188–1195PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kummer U, Krajnc B, Pahle J, Green AK, Dixon CJ, Marhl M (2005) Transition from stochastic to deterministic behavior in calcium oscillations. Biophys J 89:1603–1611PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sneyd J, Han JM, Wang L, Chen J, Yang X, Tanimura A et al (2017) On the dynamical structure of calcium oscillations. Proc Natl Acad Sci U S A 114:1456–1461PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cao P, Tan X, Donovan G, Sanderson MJ, Sneyd J (2014) A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells. PLoS Comput Biol 10:e1003783PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wang IY, Bai Y, Sanderson MJ, Sneyd J (2010) A mathematical analysis of agonist- and KCl-induced Ca2+ oscillations in mouse airway smooth muscle cells. Biophys J 98:1170–1181PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Higgins ER, Cannell MB, Sneyd J (2006) A buffering SERCA pump in models of calcium dynamics. Biophys J 91:151–163PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sneyd J, Tsaneva-Atanasova K, Yule DI, Thompson JL, Shuttleworth TJ (2004) Control of calcium oscillations by membrane fluxes. Proc Natl Acad Sci U S A 101:1392–1396PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sneyd J, Tsaneva-Atanasova K, Reznikov V, Bai Y, Sanderson MJ, Yule DI (2006) A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proc Natl Acad Sci USA 103:1675–1680PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Nowacki J, Mazlan S, Osinga HM, Tsaneva-Atanasova K (2010) The role of large-conductance Calcium-activated K+ (BK) channels in shaping bursting oscillations of a somatotroph cell model. Physica D Nonlinear Phenomena 239:485–493CrossRefGoogle Scholar
  49. 49.
    Bootman M, Niggli E, Berridge M, Lipp P (1997) Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol 499 (Pt 2):307–314PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Smith IF, Wiltgen SM, Parker I (2009) Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3. Cell Calcium 45:65–76PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Taufiq-Ur-Rahman, Skupin A, Falcke M, Taylor CW (2009) Clustering of InsP3receptors by InsP3retunes their regulation by InsP3 and Ca2+. Nature 458:655–659PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Keebler MV, Taylor CW (2017) Endogenous signalling pathways and caged IP3 evoke Ca2+ puffs at the same abundant immobile intracellular sites. J Cell Sci 130:3728–3739PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Konieczny V, Keebler MV, Taylor CW (2012) Spatial organization of intracellular Ca2+ signals. Semin Cell Dev Biol 23:172–180PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Bruno L, Solovey G, Ventura AC, Dargan S, Dawson SP (2010) Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes. Cell Calcium 47:273–286PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Shuai J, Pearson JE, Foskett JK, Mak DOD, Parker I (2007) A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback. Biophys J 93:1151–1162PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Smith IF, Parker I (2009) Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells. Proc Natl Acad Sci U S A 106:6404–6409PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Flegg MB, Rüdiger S, Erban R (2013) Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release. J Chem Phys 138:154103PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dobramysl U, Rüdiger S, Erban R (2016) Particle-based multiscale modeling of calcium puff dynamics. Multiscale Model Simul 14:997–1016CrossRefGoogle Scholar
  59. 59.
    Weinberg SH, Smith GD (2014) The influence of Ca2+ buffers on free [Ca2+] fluctuations and the effective volume of Ca2+ microdomains. Biophys J 106:2693–2709PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wieder N, Fink R, von Wegner F (2015) Exact stochastic simulation of a calcium microdomain reveals the impact of Ca2+ fluctuations on IP3R gating. Biophys J 108:557–567PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Falcke M, Moein M, Tilunaite A, Thul R, Skupin A (2018) On the phase space structure of IP3 induced Ca2+ signalling and concepts for predictive modeling. Chaos (Woodbury, NY) 28:045115Google Scholar
  62. 62.
    Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey SC et al (2008) How does intracellular Ca2+ oscillate: by chance or by the clock? Biophys J 94:2404–2411PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Thurley K, Smith IF, Tovey SC, Taylor CW, Parker I, Falcke M (2011) Timescales of IP3-evoked Ca2+ spikes emerge from Ca2+ puffs only at the cellular level. Biophys J 101:2638–2644PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Moein M, Grzyb K, Gonçalves Martins T, Komoto S, Peri F, Crawford A et al (2018) CaSiAn: a calcium signaling analyzer tool. Bioinformatics (Oxford, England) 1:11Google Scholar
  65. 65.
    Thurley K, Tovey SC, Moenke G, Prince VL, Meena A, Thomas J et al (2014) Reliable encoding of stimulus intensities within random sequences of intracellular Ca2+ spikes. Sci Signal 7:ra59Google Scholar
  66. 66.
    Rooney TA, Sass EJ, Thomas AP (1990) Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J Biol Chem 265:10792–10796PubMedPubMedCentralGoogle Scholar
  67. 67.
    Tilunaite A, Croft W, Russell N, Bellamy TC, Thul R (2017) A Bayesian approach to modelling heterogeneous calcium responses in cell populations. PLoS Comput Biol 13:e1005794PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Barbieri R, Quirk MC, Frank LM, Wilson MA, Brown EN (2001) Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. J Neurosci Methods 105:25–37PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Miura K, Tsubo Y, Okada M, Fukai T (2007) Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations. J Neurosci 27:13802–13812PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Thurley K, Skupin A, Thul R, Falcke M (2012) Fundamental properties of Ca2+ signals. Biochim Biophys Acta 1820:1185–1194PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Croft W, Reusch K, Tilunaite A, Russel N, Thul R, Bellamy TC (2016) Probabilistic encoding of stimulus strength in astrocyte global calcium signals. Glia 64:537–552PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Thul R, Falcke M (2006) Frequency of elemental events of intracellular Ca2+ dynamics. Phys Rev E 73(6 Pt 1):061923CrossRefGoogle Scholar
  73. 73.
    Thul R, Falcke M (2007) Waiting time distributions for clusters of complex molecules. Europhys Lett 79:38003CrossRefGoogle Scholar
  74. 74.
    Thul R, Thurley K, Falcke M (2009) Toward a predictive model of Ca2+ puffs. Chaos (Woodbury, NY) 19:037108Google Scholar
  75. 75.
    Thurley K, Falcke M (2011) Derivation of Ca2+ signals from puff properties reveals that pathway function is robust against cell variability but sensitive for control. Proc Natl Acad Sci U S A 108:427–432PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Moenke G, Falcke M, Thurley K (2012) Hierarchic stochastic modelling applied to intracellular Ca2+ signals. PLoS One 7:e51178PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn. McGraw Hill, BostonGoogle Scholar
  78. 78.
    Ross SM (2003) Introduction to probability models, 8th edn. Academic, AmsterdamGoogle Scholar
  79. 79.
    Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th International Conference on Machine Learning, Stanford University, Palo Alto, pp 192–199Google Scholar
  80. 80.
    Cunningham JP, Yu B, Shenoy K, Sahani M (2008) Inferring neural firing rates from spike trains using gaussian processes. In: Platt JC, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. MIT Press. Cambridge, MA, pp 329–336Google Scholar
  81. 81.
    Robert CP, Casella G (2005) Monte Carlo statistical methods. Springer Texts in Statistics. Springer, New YorkGoogle Scholar
  82. 82.
    Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2002) The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput 14:325–346PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Skupin A, Falcke M (2010) Statistical analysis of calcium oscillations. Eu Phys J Spec Top 187:231–240CrossRefGoogle Scholar
  84. 84.
    Devroye L (1986) Non-uniform random variate generation. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jake Powell
    • 1
  • Martin Falcke
    • 2
    • 3
  • Alexander Skupin
    • 4
    • 5
  • Tomas C. Bellamy
    • 6
  • Theodore Kypraios
    • 1
  • Rüdiger Thul
    • 1
    Email author
  1. 1.Centre for Mathematical Medicine and Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
  2. 2.Max Delbrück Centre for Molecular MedicineBerlinGermany
  3. 3.Department of PhysicsHumboldt UniversityBerlinGermany
  4. 4.Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
  5. 5.National Biomedical Computation ResourceUniversity California San DiegoLa JollaUSA
  6. 6.School of Life SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations