Regulation of Multifunctional Calcium/Calmodulin Stimulated Protein Kinases by Molecular Targeting

  • Kathryn Anne Skelding
  • John A. P. Rostas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1131)


Multifunctional calcium/calmodulin-stimulated protein kinases control a broad range of cellular functions in a multitude of cell types. This family of kinases contain several structural similarities and all are regulated by phosphorylation, which either activates, inhibits or modulates their kinase activity. As these protein kinases are widely or ubiquitously expressed, and yet regulate a broad range of different cellular functions, additional levels of regulation exist that control these cell-specific functions. Of particular importance for this specificity of function for multifunctional kinases is the expression of specific binding proteins that mediate molecular targeting. These molecular targeting mechanisms allow pools of kinase in different cells, or parts of a cell, to respond differently to activation and produce different functional outcomes.


CaMKK CaMKI CaMKII CaMKIV Casein kinase I Targeting 



αCaMKII anchoring protein


AMP-activated protein kinase


Adenosine triphosphate


Calcium ions




Calcium/calmodulin stimulated protein kinases


Calcium/calmodulin stimulated protein kinase I


Calcium/calmodulin stimulated protein kinase II


Calcium/calmodulin stimulated protein kinase IV


Calcium/calmodulin stimulated protein kinase kinase


Casein kinase 1


CDC-like kinase 2


Glycogen synthase kinase 3


cAMP-dependent protein kinase


Protein kinase B; Akt


Post-synaptic density






  1. 1.
    Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11(5):331–340CrossRefPubMedGoogle Scholar
  2. 2.
    Skelding KA, Rostas JA (2012) The role of molecular regulation and targeting in regulating calcium/calmodulin stimulated protein kinases. Adv Exp Med Biol 740:703–730CrossRefPubMedGoogle Scholar
  3. 3.
    De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279(5348):227–230CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Skelding KA, Rostas JA (2009) Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment. Neurochem Res 34(10):1792–1804CrossRefPubMedGoogle Scholar
  5. 5.
    Racioppi L, Means AR (2012) Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem 287(38):31658–31665CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Selbert MA, Anderson KA, Huang QH, Goldstein EG, Means AR, Edelman AM (1995) Phosphorylation and activation of Ca2+-calmodulin-dependent protein kinase IV by Ca2+-calmodulin-dependent protein kinase Ia kinase. Phosphorylation of threonine 196 is essential for activation. J Biol Chem 270(29):17616–17621CrossRefPubMedGoogle Scholar
  7. 7.
    Hsu LS, Chen GD, Lee LS, Chi CW, Cheng JF, Chen JY (2001) Human Ca2+/calmodulin-dependent protein kinase kinase beta gene encodes multiple isoforms that display distinct kinase activity. J Biol Chem 276(33):31113–31123CrossRefPubMedGoogle Scholar
  8. 8.
    Ohmstede CA, Jensen KF, Sahyoun NE (1989) Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. J Biol Chem 264(10):5866–5875PubMedGoogle Scholar
  9. 9.
    Anderson KA, Means RL, Huang QH, Kemp BE, Goldstein EG, Selbert MA et al (1998) Components of a calmodulin-dependent protein kinase cascade. Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase beta. J Biol Chem 273(48):31880–31889CrossRefPubMedGoogle Scholar
  10. 10.
    Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG (1995) 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem 270(45):27186–27191CrossRefPubMedGoogle Scholar
  11. 11.
    Yano S, Tokumitsu H, Soderling TR (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396(6711):584–587CrossRefPubMedGoogle Scholar
  12. 12.
    Anderson KA, Means AR (2002) Defective signaling in a subpopulation of CD4(+) T cells in the absence of Ca2+/calmodulin-dependent protein kinase IV. Mol Cell Biol 22(1):23–29CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Neal AP, Molina-Campos E, Marrero-Rosado B, Bradford AB, Fox SM, Kovalova N et al (2010) CaMKK-CaMKI signaling pathways differentially control axon and dendrite elongation in cortical neurons. J Neurosci 30(8):2807–2809CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kitsos CM, Sankar U, Illario M, Colomer-Font JM, Duncan AW, Ribar TJ et al (2005) Calmodulin-dependent protein kinase IV regulates hematopoietic stem cell maintenance. J Biol Chem 280(39):33101–33108CrossRefPubMedGoogle Scholar
  15. 15.
    Kahl CR, Means AR (2004) Regulation of cyclin D1/Cdk4 complexes by calcium/calmodulin-dependent protein kinase I. J Biol Chem 279(15):15411–15419CrossRefPubMedGoogle Scholar
  16. 16.
    Anderson KA, Ribar TJ, Illario M, Means AR (1997) Defective survival and activation of thymocytes in transgenic mice expressing a catalytically inactive form of Ca2+/calmodulin-dependent protein kinase IV. Mol Endocrinol 11(6):725–737CrossRefPubMedGoogle Scholar
  17. 17.
    Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59(6):914–931CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tokumitsu H, Soderling TR (1996) Requirements for calcium and calmodulin in the calmodulin kinase activation cascade. J Biol Chem 271(10):5617–5622CrossRefPubMedGoogle Scholar
  19. 19.
    Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D et al (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271(44):27879–27887CrossRefPubMedGoogle Scholar
  20. 20.
    Edelman AM, Mitchelhill KI, Selbert MA, Anderson KA, Hook SS, Stapleton D et al (1996) Multiple Ca2+-calmodulin-dependent protein kinase kinases from rat brain. Purification, regulation by Ca2+-calmodulin, and partial amino acid sequence. J Biol Chem 271(18):10806–10810CrossRefPubMedGoogle Scholar
  21. 21.
    Okuno S, Kitani T, Fujisawa H (2001) Regulation of Ca2+/calmodulin-dependent protein kinase kinase alpha by cAMP-dependent protein kinase: I. Biochemical analysis. J Biochem 130(4):503–513CrossRefPubMedGoogle Scholar
  22. 22.
    Tokumitsu H, Takahashi N, Eto K, Yano S, Soderling TR, Muramatsu M (1999) Substrate recognition by Ca2+/Calmodulin-dependent protein kinase kinase. Role of the arg-pro-rich insert domain. J Biol Chem 274(22):15803–15810CrossRefPubMedGoogle Scholar
  23. 23.
    Davare MA, Saneyoshi T, Guire ES, Nygaard SC, Soderling TR (2004) Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J Biol Chem 279(50):52191–52199CrossRefPubMedGoogle Scholar
  24. 24.
    Wayman GA, Tokumitsu H, Soderling TR (1997) Inhibitory cross-talk by cAMP kinase on the calmodulin-dependent protein kinase cascade. J Biol Chem 272(26):16073–16076CrossRefPubMedGoogle Scholar
  25. 25.
    Matsushita M, Nairn AC (1999) Inhibition of the Ca2+/calmodulin-dependent protein kinase I cascade by cAMP-dependent protein kinase. J Biol Chem 274(15):10086–10093CrossRefPubMedGoogle Scholar
  26. 26.
    Green MF, Scott JW, Steel R, Oakhill JS, Kemp BE, Means AR (2011) Ca2+/calmodulin-dependent protein kinase kinase beta is regulated by multisite phosphorylation. J Biol Chem 286(32):28066–28079CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Psenakova K, Petrvalska O, Kylarova S, Lentini Santo D, Kalabova D, Herman P et al (2018) 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2). Biochim Biophys Acta. ePub ahead of printGoogle Scholar
  28. 28.
    Guest CB, Deszo EL, Hartman ME, York JM, Kelley KW, Freund GG (2008) Ca2+/calmodulin-dependent kinase kinase alpha is expressed by monocytic cells and regulates the activation profile. Plos One 3(2):e1606CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Picciotto MR, Zoli M, Bertuzzi G, Nairn AC (1995) Immunochemical localization of calcium/calmodulin-dependent protein kinase I. Synapse 20(1):75–84CrossRefPubMedGoogle Scholar
  30. 30.
    Rasmussen CD (2000) Cloning of a calmodulin kinase I homologue from Schizosaccharomyces pombe. J Biol Chem 275(1):685–690CrossRefGoogle Scholar
  31. 31.
    Skelding KA, Rostas JA, Verrills NM (2011) Controlling the cell cycle: the role of calcium/calmodulin-stimulated protein kinases I and II. Cell Cycle 10(4):631–639CrossRefGoogle Scholar
  32. 32.
    Nairn AC, Greengard P (1987) Purification and characterization of Ca2+/calmodulin-dependent protein kinase I from bovine brain. J Biol Chem 262(15):7273–7281PubMedGoogle Scholar
  33. 33.
    Wayman GA, Kaech S, Grant WF, Davare M, Impey S, Tokumitsu H et al (2004) Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci 24(15):3786–3794CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Condon JC, Pezzi V, Drummond BM, Yin S, Rainey WE (2002) Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Endocrinology 143(9):3651–3657CrossRefGoogle Scholar
  35. 35.
    Jusuf AA, Sakagami H, Kikkawa S, Terashima T (2016) Expression of beta subunit 2 of Ca(2)+/calmodulin-dependent protein kinase I in the developing rat retina. Kobe J Med Sci 61(4):E115–E123Google Scholar
  36. 36.
    Haribabu B, Hook SS, Selbert MA, Goldstein EG, Tomhave ED, Edelman AM et al (1995) Human calcium-calmodulin dependent protein-kinase-I – CDNA cloning, domain-structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein-kinase-I kinase. EMBO J 14(15):3679–3686CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hook SS, Kemp BE, Means AR (1999) Peptide specificity determinants at P-7 and P-6 enhance the catalytic efficiency of Ca2+/calmodulin-dependent protein kinase I in the absence of activation loop phosphorylation. J Biol Chem 274(29):20215–20222CrossRefGoogle Scholar
  38. 38.
    Senga Y, Ishida A, Shigeri Y, Kameshita I, Sueyoshi N (2015) The phosphatase-resistant isoform of CaMKI, Ca(2)(+)/calmodulin-dependent protein kinase Idelta (CaMKIdelta), remains in its “Primed” form without Ca(2)(+) stimulation. Biochemistry 54(23):3617–3630CrossRefGoogle Scholar
  39. 39.
    Stedman DR, Uboha NV, Stedman TT, Nairn AC, Picciotto MR (2004) Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-alpha depends on a nuclear export signal in its regulatory domain. FEBS Lett 566(1-3):275–280CrossRefGoogle Scholar
  40. 40.
    Sakagami H, Kamata A, Nishimura H, Kasahara J, Owada Y, Takeuchi Y et al (2005) Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase I delta in hippocampal neurons. Eur J Neurosci 22(11):2697–2707CrossRefPubMedGoogle Scholar
  41. 41.
    Wu JY, Gonzalez-Robayana IJ, Richards JS, Means AR (2000) Female fertility is reduced in mice lacking Ca2+/calmodulin-dependent protein kinase IV. Endocrinology 141:4777–4783CrossRefPubMedGoogle Scholar
  42. 42.
    Wu JY, Means AR (2000) Ca2+/calmodulin-dependent protein kinase IV is expressed in spermatids and targeted to chromatin and the nuclear matrix. J Biol Chem 275(11):7994–7999CrossRefPubMedGoogle Scholar
  43. 43.
    Kimura Y, Corcoran EE, Eto K, Gengyo-Ando K, Muramatsu MA, Kobayashi R et al (2002) A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans. EMBO Rep 3(10):962–966CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bleier J, Toliver A (2017) Exploring the role of CaMKIV in homeostatic plasticity. J Neurosci 37(48):11520–11522CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Takemura M, Mishima T, Wang Y, Kasahara J, Fukunaga K, Ohashi K et al (2009) Ca2+/calmodulin-dependent protein kinase IV-mediated LIM kinase activation is critical for calcium signal-induced neurite outgrowth. J Biol Chem 284(42):28554–28562CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wei F, Qiu CS, Liauw J, Robinson DA, Ho N, Chatila T et al (2002) Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci 5(6):573–579CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Racioppi L, Means AR (2008) Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller. Trends Immunol 29(12):600–607CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gu R, Ding M, Shi D, Huang T, Guo M, Yu L et al (2018) Calcium/calmodulin-dependent protein kinase IV mediates IFN-gamma-induced immune behaviors in skeletal muscle cells. Cell Physiol Biochem 46(1):351–364CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shi D, Gu R, Song Y, Ding M, Huang T, Guo M et al (2018) Calcium/calmodulin-dependent protein kinase IV (CaMKIV) mediates acute skeletal muscle inflammatory response. Inflammation 41(1):199–212CrossRefGoogle Scholar
  50. 50.
    Wei YP, Ye JW, Wang X, Zhu LP, Hu QH, Wang Q et al (2018) Tau-induced Ca2+/calmodulin-dependent protein kinase-IV activation aggravates nuclear Tau hyperphosphorylation. Neurosci Bull 34(2):261–269CrossRefPubMedGoogle Scholar
  51. 51.
    Zhao X, Shen L, Xu L, Wang Z, Ma C, Huang Y (2016) Inhibition of CaMKIV relieves streptozotocin-induced diabetic neuropathic pain through regulation of HMGB1. BMC Anesthesiol 16(1):27CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Swulius MT, Waxham MN (2008) Ca2+/calmodulin-dependent protein kinases. Cell Mol Life Sci 65(17):2637–2657CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Murao K, Li J, Imachi H, Muraoka T, Masugata H, Zhang GX et al (2009) Exendin-4 regulates glucokinase expression by CaMKK/CaMKIV pathway in pancreatic beta-cell line. Diabetes Obes Metab 11(10):939–946CrossRefPubMedGoogle Scholar
  54. 54.
    Lemrow SM, Anderson KA, Joseph JD, Ribar TJ, Noeldner PK, Means AR (2004) Catalytic activity is required for calcium/calmodulin-dependent protein kinase IV to enter the nucleus. J Biol Chem 279(12):11664–11671CrossRefPubMedGoogle Scholar
  55. 55.
    Lalonde J, Lachance PE, Chaudhuri A (2004) Monocular enucleation induces nuclear localization of calcium/calmodulin-dependent protein kinase IV in cortical interneurons of adult monkey area V1. J Neurosci 24(2):554–564CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Miller SG, Kennedy MB (1985) Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. J Biol Chem 260(15):9039–9046PubMedGoogle Scholar
  57. 57.
    Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3(3):175–190CrossRefPubMedGoogle Scholar
  59. 59.
    Ohyama A, Hosaka K, Komiya Y, Akagawa K, Yamauchi E, Taniguchi H et al (2002) Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A. J Neurosci 22(9):3342–3351CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Giese KP, Fedorov NB, Filipkowski RK, Silva AJ (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279(5352):870–873CrossRefPubMedGoogle Scholar
  61. 61.
    Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M (2002) Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36(3):507–519CrossRefPubMedGoogle Scholar
  62. 62.
    Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23(2):75–80CrossRefPubMedGoogle Scholar
  63. 63.
    Taha S, Hanover JL, Silva AJ, Stryker MP (2002) Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity. Neuron 36(3):483–491CrossRefPubMedGoogle Scholar
  64. 64.
    Cao X, Wang H, Mei B, An S, Yin L, Wang LP et al (2008) Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation. Neuron 60(2):353–366CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    von Hertzen LS, Giese KP (2005) Alpha-isoform of Ca2+/calmodulin-dependent kinase II autophosphorylation is required for memory consolidation-specific transcription. Neuroreport 16(12):1411–1414CrossRefGoogle Scholar
  66. 66.
    Vigil FA, Giese KP (2018) Calcium/calmodulin-dependent kinase II and memory destabilization: a new role in memorymaintenance. J Neurochem.. ePub ahead of printGoogle Scholar
  67. 67.
    Li X, Goel P, Wondolowski J, Paluch J, Dickman D (2018) A glutamate homeostat controls the presynaptic inhibition of neurotransmitter release. Cell Rep 23(6):1716–1727CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Nicole O, Bell DM, Leste-Lasserre T, Doat H, Guillemot F, Pacary E (2018) A novel role for CAMKIIbeta in the regulation of cortical neuron migration: implications for neurodevelopmental disorders. Mol Psychiatry. ePub ahead of print.Google Scholar
  69. 69.
    Jones KT (2007) Intracellular calcium in the fertilization and development of mammalian eggs. Clin Exp Pharmacol Physiol 34(10):1084–1089CrossRefPubMedGoogle Scholar
  70. 70.
    Skelding KA, Suzuki T, Gordon S, Xue J, Verrills NM, Dickson PW et al (2010) Regulation of CaMKII by phospho-Thr253 or phospho-Thr286 sensitive targeting alters cellular function. Cell Signal 22(5):759–769CrossRefPubMedGoogle Scholar
  71. 71.
    Hoffman A, Carpenter H, Kahl R, Watt LF, Dickson PW, Rostas JAP et al (2014) Dephosphorylation of CaMKII at T253 controls the metaphase-anaphase transition. Cellular Signal 26(4):748–756CrossRefGoogle Scholar
  72. 72.
    Shin MK, Kim MK, Bae YS, Jo I, Lee SJ, Chung CP et al (2008) A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells. Cell Signal 20(4):613–624CrossRefPubMedGoogle Scholar
  73. 73.
    Munevar S, Gangopadhyay SS, Gallant C, Colombo B, Sellke FW, Morgan KG (2008) CaMKIIT287 and T305 regulate history-dependent increases in alpha agonist-induced vascular tone. J Cell Mol Med 12(1):219–226CrossRefPubMedGoogle Scholar
  74. 74.
    Maier LS, Bers DM (2007) Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res 73(4):631–640CrossRefPubMedGoogle Scholar
  75. 75.
    Chi M, Evans H, Gilchrist J, Mayhew J, Hoffman A, Pearsall EA et al (2016) Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells. Sci Rep 6:33132CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Liu Z, Han G, Cao Y, Wang Y, Gong H (2014) Calcium/calmodulindependent protein kinase II enhances metastasis of human gastric cancer by upregulating nuclear factorkappaB and Aktmediated matrix metalloproteinase9 production. Mol Med Rep 10(5):2459–2464CrossRefPubMedGoogle Scholar
  77. 77.
    Abdul Majeed ABB, Pearsall E, Carpenter H, Brzozowski J, Dickson PW, Rostas JAP et al (2014) CaMKII kinase activity, targeting and control of cellular functions: effect of single and double phosphorylation of CaMKIIalpha. Calcium Signal 1:36–51Google Scholar
  78. 78.
    Sun X, Cao H, Zhan L, Yin C, Wang G, Liang P et al (2018) Mitochondrial fission promotes cell migration by Ca2+ /CaMKII/ERK/FAK pathway in hepatocellular carcinoma. Liver Int 38(7):1263–1272CrossRefPubMedGoogle Scholar
  79. 79.
    Yu G, Cheng CJ, Lin SC, Lee YC, Frigo DE, Yu-Lee LY et al (2018) Organelle-derived acetyl-CoA promotes prostate cancer cell survival, migration, and metastasis via activation of calmodulin kinase II. Cancer Res 78(10):2490–2502CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123(5):849–860CrossRefPubMedGoogle Scholar
  81. 81.
    Kolb SJ, Hudmon A, Ginsberg TR, Waxham MN (1998) Identification of domains essential for the assembly of calcium/calmodulin-dependent protein kinase II holoenzymes. J Biol Chem 273(47):31555–31564CrossRefPubMedGoogle Scholar
  82. 82.
    Hanson PI, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in autophosphorylation of multifunctional cam kinase may underlie decoding of calcium signals. Neuron 12(5):943–956CrossRefPubMedGoogle Scholar
  83. 83.
    Meyer T, Hanson PI, Stryer L, Schulman H (1992) Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256(5060):1199–1202CrossRefPubMedGoogle Scholar
  84. 84.
    Strack S, Colbran RJ (1998) Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem 273(33):20689–20692CrossRefPubMedGoogle Scholar
  85. 85.
    Strack S, Choi S, Lovinger DM, Colbran RJ (1997) Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J Biol Chem 272(21):13467–13470CrossRefPubMedGoogle Scholar
  86. 86.
    Hanson PI, Schulman H (1992) Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis. J Biol Chem 267(24):17216–17224PubMedGoogle Scholar
  87. 87.
    Patton BL, Miller SG, Kennedy MB (1990) Activation of type II calcium/calmodulin-dependent protein kinase by Ca2+/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain. J Biol Chem 265:11204–11212PubMedGoogle Scholar
  88. 88.
    Kato K, Iwamoto T, Kida S (2013) Interactions between alphaCaMKII and calmodulin in living cells: conformational changes arising from CaM-dependent and -independent relationships. Mol Brain 6:37CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lengyel I, Fieuw-Makaroff S, Hall AL, Sim AT, Rostas JA, Dunkley PR (2000) Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc. J Neurochem 75(2):594–605CrossRefPubMedGoogle Scholar
  90. 90.
    Mizuno D, Kawahara M (2013) The molecular mechanisms of zinc neurotoxicity and the pathogenesis of vascular type senile dementia. Int J Mol Sci 14(11):22067–22081CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Migues PV, Lehmann IT, Fluechter L, Cammarota M, Gurd JW, Sim ATR et al (2006) Phosphorylation of CaMKII at Thr253 occurs in vivo and enhances binding to isolated postsynaptic densities. J Neurochem 98(1):289–299CrossRefPubMedGoogle Scholar
  92. 92.
    Gurd JW, Rawof S, Zhen Huo J, Dykstra C, Bissoon N, Teves L et al (2008) Ischemia and status epilepitcus result in enhanced phosphorylation of calcium and calmodulin-stimulated protein kinase II on threonine 253. Brain Res 1218:158–165CrossRefPubMedGoogle Scholar
  93. 93.
    Skelding KA, Spratt NJ, Fluechter L, Dickson PW, Rostas JAP (2012) alpha CaMKII is differentially regulated in brain regions that exhibit differing sensitivities to ischemia and excitotoxicity. J Cerebr Blood F Met 32(12):2181–2192CrossRefGoogle Scholar
  94. 94.
    Rostas JA, Hoffman A, Murtha LA, Pepperall D, McLeod DD, Dickson PW et al (2017) Ischaemia- and excitotoxicity-induced CaMKII-Mediated neuronal cell death: the relative roles of CaMKII autophosphorylation at T286 and T253. Neurochem Int. 104:6–10CrossRefPubMedGoogle Scholar
  95. 95.
    Hanson PI, Kapiloff MS, Lou LL, Rosenfeld MG, Schulman H (1989) Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron. 3(1):59–70CrossRefPubMedGoogle Scholar
  96. 96.
    Colbran RJ, Soderling TR (1990) Calcium calmodulin-independent autophosphorylation sites of calcium calmodulin-dependent protein kinase-II – studies on the effect of phosphorylation of threonine-305/306 and serine-314 on calmodulin binding using synthetic peptides. J Biol Chem 265(19):11213–11219PubMedGoogle Scholar
  97. 97.
    Jaffe H, Vinade L, Dosemeci A (2004) Identification of novel phosphorylation sites on postsynaptic density proteins. Biochem Biophys Res Commun 321(1):210–218CrossRefPubMedGoogle Scholar
  98. 98.
    Molloy SS, Kennedy MB (1991) Autophosphorylation of type II Ca2+/calmodulin-dependent protein kinase in cultures of postnatal rat hippocampal slices. Proc Natl Acad Sci U S A 88(11):4756–4760CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP et al (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280(7):5972–5982CrossRefPubMedGoogle Scholar
  100. 100.
    Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133(3):462–474CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Tuazon PT, Traugh JA (1991) Casein kinase I and II--multipotential serine protein kinases: structure, function, and regulation. Adv Second Messenger Phosphoprotein Res 23:123–164PubMedGoogle Scholar
  102. 102.
    Nakajo S, Hagiwara T, Nakaya K, Nakamura Y (1987) Tissue distribution of casein kinases. Biochem Int 14(1):701–707PubMedGoogle Scholar
  103. 103.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934CrossRefPubMedGoogle Scholar
  104. 104.
    Rowles J, Slaughter C, Moomaw C, Hsu J, Cobb MH (1991) Purification of casein kinase I and isolation of cDNAs encoding multiple casein kinase I-like enzymes. Proc Natl Acad Sci U S A 88(21):9548–9552CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Tapia C, Featherstone T, Gomez C, Taillon-Miller P, Allende CC, Allende JE (1994) Cloning and chromosomal localization of the gene coding for human protein kinase CK1. FEBS Lett 349(2):307–312CrossRefPubMedGoogle Scholar
  106. 106.
    Fish KJ, Cegielska A, Getman ME, Landes GM, Virshup DM (1995) Isolation and characterization of human casein kinase I epsilon (CKI), a novel member of the CKI gene family. J Biol Chem 270(25):14875–14883CrossRefPubMedGoogle Scholar
  107. 107.
    Burzio V, Antonelli M, Allende CC, Allende JE (2002) Biochemical and cellular characteristics of the four splice variants of protein kinase CK1alpha from zebrafish (Danio rerio). J Cell Biochem 86(4):805–814CrossRefPubMedGoogle Scholar
  108. 108.
    Vielhaber E, Virshup DM (2001) Casein kinase I: from obscurity to center stage. IUBMB Life 51(2):73–78CrossRefPubMedGoogle Scholar
  109. 109.
    Zhang L, Li H, Chen Y, Gao X, Lu Z, Gao L et al (2017) The down-regulation of casein kinase 1 alpha as a host defense response against infectious bursal disease virus infection. Virology 512:211–221CrossRefPubMedGoogle Scholar
  110. 110.
    Bischof J, Muller A, Fander M, Knippschild U, Fischer D (2011) Neurite outgrowth of mature retinal ganglion cells and PC12 cells requires activity of CK1delta and CK1epsilon. PLoS One. 6(6):e20857CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Zhang B, Butler AM, Shi Q, Xing S, Herman PK (2018) P-body localization of the Hrr25/CK1 protein kinase is required for the completion of meiosis. Mol Cell Biol. ePub ahead of print.Google Scholar
  112. 112.
    Pulgar V, Marin O, Meggio F, Allende CC, Allende JE, Pinna LA (1999) Optimal sequences for non-phosphate-directed phosphorylation by protein kinase CK1 (casein kinase-1) – a re-evaluation. Eur J Biochem 260(2):520–526CrossRefPubMedGoogle Scholar
  113. 113.
    Marin O, Bustos VH, Cesaro L, Meggio F, Pagano MA, Antonelli M et al (2003) A noncanonical sequence phosphorylated by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting of important signaling proteins. P Natl Acad Sci USA 100(18):10193–10200CrossRefGoogle Scholar
  114. 114.
    Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, Roach PJ (1990) Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem 265(24):14264–14269PubMedGoogle Scholar
  115. 115.
    Flotow H, Roach PJ (1991) Role of acidic residues as substrate determinants for casein kinase-I. J Biol Chem 266(6):3724–3727PubMedGoogle Scholar
  116. 116.
    Meggio F, Perich JW, Reynolds EC, Pinna LA (1991) A synthetic beta-casein phosphopeptide and analogs as model substrates for casein kinase-1, a ubiquitous, phosphate directed protein-kinase. Febs Letters 283(2):303–306CrossRefPubMedGoogle Scholar
  117. 117.
    Bustos VH, Marin O, Meggio F, Cesaro L, Allende CC, Allende JE et al (2005) Generation of protein kinase Ck1alpha mutants which discriminate between canonical and non-canonical substrates. Biochem J 391(Pt 2):417–424CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Pulgar V, Tapia C, Vignolo P, Santos J, Sunkel CE, Allende CC et al (1996) The recombinant alpha isoform of protein kinase CK1 from Xenopus laevis can phosphorylate tyrosine in synthetic substrates. Eur J Biochem 242(3):519–528CrossRefPubMedGoogle Scholar
  119. 119.
    Braun S, Raymond WE, Racker E (1984) Synthetic tyrosine polymers as substrates and inhibitors of tyrosine-specific protein-kinases. J Biol Chem 259(4):2051–2054PubMedGoogle Scholar
  120. 120.
    Graves PR, Roach PJ (1995) Role of COOH-terminal phosphorylation in the regulation of casein kinase I delta. J Biol Chem 270(37):21689–21694CrossRefPubMedGoogle Scholar
  121. 121.
    Cegielska A, Gietzen KF, Rivers A, Virshup DM (1998) Autoinhibition of casein kinase I epsilon (CKI epsilon) is relieved by protein phosphatases and limited proteolysis. J Biol Chem 273(3):1357–1364CrossRefPubMedGoogle Scholar
  122. 122.
    Gietzen KF, Virshup DM (1999) Identification of inhibitory autophosphorylation sites in casein kinase I epsilon. J Biol Chem 274(45):32063–32070CrossRefPubMedGoogle Scholar
  123. 123.
    Zhai L, Graves PR, Robinson LC, Italiano M, Culbertson MR, Rowles J et al (1995) Casein kinase I gamma subfamily. Molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the Saccharomyces cerevisiae YCK genes. J Biol Chem 270(21):12717–12724CrossRefPubMedGoogle Scholar
  124. 124.
    Longenecker KL, Roach PJ, Hurley TD (1998) Crystallographic studies of casein kinase I delta toward a structural understanding of auto-inhibition. Acta Crystallogr D Biol Crystallogr 54(Pt 3):473–475CrossRefPubMedGoogle Scholar
  125. 125.
    Kuret J, Schulman H (1984) Purification and characterization of a Ca2+/calmodulin-dependent protein kinase from rat brain. Biochemistry 23(23):5495–5504CrossRefPubMedGoogle Scholar
  126. 126.
    Brooks CL, Landt M (1984) Calcium-ion and calmodulin-dependent kappa-casein kinase in rat mammary acini. Biochem J 224(1):195–200CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Giamas G, Hirner H, Shoshiashvili L, Grothey A, Gessert S, Kuhl M et al (2007) Phosphorylation of CK1delta: identification of Ser370 as the major phosphorylation site targeted by PKA in vitro and in vivo. Biochem J 406(3):389–398CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Foldynova-Trantirkova S, Sekyrova P, Tmejova K, Brumovska E, Bernatik O, Blankenfeldt W et al (2010) Breast cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration. Breast Cancer Res 12(3):R30CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Graves PR, Haas DW, Hagedorn CH, DePaoli-Roach AA, Roach PJ (1993) Molecular cloning, expression, and characterization of a 49-kilodalton casein kinase I isoform from rat testis. J Biol Chem 268(9):6394–6401PubMedGoogle Scholar
  130. 130.
    Carmel G, Leichus B, Cheng X, Patterson SD, Mirza U, Chait BT et al (1994) Expression, purification, crystallization, and preliminary x-ray analysis of casein kinase-1 from Schizosaccharomyces pombe. J Biol Chem 269(10):7304–7309PubMedGoogle Scholar
  131. 131.
    Schittek B, Sinnberg T (2014) Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 13:231CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Rivers A, Gietzen KF, Vielhaber E, Virshup DM (1998) Regulation of casein kinase I epsilon and casein kinase I delta by an in vivo futile phosphorylation cycle. J Biol Chem 273(26):15980–15984CrossRefPubMedGoogle Scholar
  133. 133.
    Swiatek W, Tsai IC, Klimowski L, Pepler A, Barnette J, Yost HJ et al (2004) Regulation of casein kinase I epsilon activity by Wnt signaling. J Biol Chem 279(13):13011–13017CrossRefPubMedGoogle Scholar
  134. 134.
    Wang PC, Vancura A, Mitcheson TG, Kuret J (1992) Two genes in Saccharomyces cerevisiae encode a membrane-bound form of casein kinase-1. Mol Biol Cell 3(3):275–286CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Vancura A, Sessler A, Leichus B, Kuret J (1994) A prenylation motif is required for plasma membrane localization and biochemical function of casein kinase I in budding yeast. J Biol Chem 269(30):19271–19278PubMedGoogle Scholar
  136. 136.
    Ho Y, Mason S, Kobayashi R, Hoekstra M, Andrews B (1997) Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94(2):581–586CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Milne DM, Looby P, Meek DW (2001) Catalytic activity of protein kinase CK1 delta (casein kinase 1delta) is essential for its normal subcellular localization. Exp Cell Res 263(1):43–54CrossRefPubMedGoogle Scholar
  138. 138.
    Yin H, Laguna KA, Li G, Kuret J (2006) Dysbindin structural homologue CK1BP is an isoform-selective binding partner of human casein kinase-1. Biochemistry 45(16):5297–5308CrossRefPubMedGoogle Scholar
  139. 139.
    Gross SD, Hoffman DP, Fisette PL, Baas P, Anderson RA (1995) A phosphatidylinositol 4,5-bisphosphate-sensitive casein kinase I alpha associates with synaptic vesicles and phosphorylates a subset of vesicle proteins. J Cell Biol 130(3):711–724CrossRefPubMedGoogle Scholar
  140. 140.
    Gross SD, Simerly C, Schatten G, Anderson RA (1997) A casein kinase I isoform is required for proper cell cycle progression in the fertilized mouse oocyte. J Cell Sci 110:3083–3090PubMedGoogle Scholar
  141. 141.
    Brockman JL, Gross SD, Sussman MR, Anderson RA (1992) Cell cycle-dependent localization of casein kinase I to mitotic spindles. Proc Natl Acad Sci U S A 89(20):9454–9458CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Elmore ZC, Guillen RX, Gould KL (2018) The kinase domain of CK1 enzymes contains the localization cue essential for compartmentalized signaling at the spindle pole. Mol Biol Cell. ePub ahead of print. mbcE18020129Google Scholar
  143. 143.
    Wang X, Hoekstra MF, DeMaggio AJ, Dhillon N, Vancura A, Kuret J et al (1996) Prenylated isoforms of yeast casein kinase I, including the novel Yck3p, suppress the gcs1 blockage of cell proliferation from stationary phase. Mol Cell Biol 16(10):5375–5385CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    GWL E, Edison, Virshup DM (2017) Site-specific phosphorylation of casein kinase 1 delta (CK1delta) regulates its activity towards the circadian regulator PER2. PLoS One 12(5):e0177834CrossRefGoogle Scholar
  145. 145.
    Zhang J, Gross SD, Schroeder MD, Anderson RA (1996) Casein kinase I alpha and alpha L: alternative splicing-generated kinases exhibit different catalytic properties. Biochemistry 35(50):16319–16327CrossRefPubMedGoogle Scholar
  146. 146.
    Takano A, Hoe HS, Isojima Y, Nagai K (2004) Analysis of the expression, localization and activity of rat casein kinase 1epsilon-3. Neuroreport 15(9):1461–1464CrossRefPubMedGoogle Scholar
  147. 147.
    Kannanayakal TJ, Tao H, Vandre DD, Kuret J (2006) Casein kinase-1 isoforms differentially associate with neurofibrillary and granulovacuolar degeneration lesions. Acta Neuropathol 111(5):413–421CrossRefPubMedGoogle Scholar
  148. 148.
    Eide EJ, Vielhaber EL, Hinz WA, Virshup DM (2002) The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J Biol Chem 277(19):17248–17254CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Clokie S, Falconer H, Mackie S, Dubois T, Aitken A (2009) The interaction between casein kinase Ialpha and 14-3-3 is phosphorylation dependent. FEBS J. 276(23):6971–6984CrossRefPubMedGoogle Scholar
  150. 150.
    Rostas JAP, Spratt NJ, Dickson PW, Skelding KA (2017) The role of Ca2+-calmodulin stimulated protein kinase II in ischaemic stroke – A potential target for neuroprotective therapies. Neurochem Int 107:33–42CrossRefPubMedGoogle Scholar
  151. 151.
    Hudmon A, Schulman H (2002) Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 364(Pt 3):593–611CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Sugai R, Takeuchi M, Okuno S, Fujisawa H (1996) Molecular cloning of a novel protein containing the association domain of calmodulin-dependent protein kinase II. J Biochem 120(4):773–779CrossRefPubMedGoogle Scholar
  153. 153.
    Bayer KU, Harbers K, Schulman H (1998) alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J 17(19):5598–5605CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    O'Leary H, Lasda E, Bayer KU (2006) CaMKIIbeta association with the actin cytoskeleton is regulated by alternative splicing. Mol Biol Cell 17(11):4656–4665CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Wang X, Rostas JA (1996) Effect of hypothyroidism on the subcellular distribution of Ca2+/calmodulin-stimulated protein kinase II in chicken brain during posthatch development. J Neurochem 66(4):1625–1632CrossRefGoogle Scholar
  156. 156.
    Lin YC, Redmond L (2008) CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proc Natl Acad Sci U S A 105(41):15791–15796CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Kolb SJ, Hudmon A, Waxham MN (1995) Ca2+/calmodulin kinase II translocates in a hippocampal slice model of ischemia. J Neurochem 64(5):2147–2156CrossRefGoogle Scholar
  158. 158.
    Suzuki T, Okumuranoji K, Tanaka R, Tada T (1994) Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein-kinase-II into postsynaptic density after decapitation. J Neurochem 63(4):1529–1537CrossRefGoogle Scholar
  159. 159.
    Elgersma Y, Fedorov NB, Ikonen S, Choi ES, Elgersma M, Carvalho OM et al (2002) Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron 36(3):493–505CrossRefGoogle Scholar
  160. 160.
    Bayer KU, Schulman H (2001) Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun 289(5):917–923CrossRefGoogle Scholar
  161. 161.
    Dhavan R, Greer PL, Morabito MA, Orlando LR, Tsai LH (2002) The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner. J Neurosci 22(18):7879–7891CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Robison AJ, Bartlett RK, Bass MA, Colbran RJ (2005) Differential modulation of Ca2+/calmodulin-dependent protein kinase II activity by regulated interactions with N-methyl-D-aspartate receptor NR2B subunits and alpha-actinin. J Biol Chem 280(47):39316–39323CrossRefGoogle Scholar
  163. 163.
    Khan S, Conte I, Carter T, Bayer KU, Molloy JE (2016) Multiple CaMKII binding modes to the actin cytoskeleton revealed by single-molecule imaging. Biophys J 111(2):395–408CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Wang X, Tian QB, Okano A, Sakagami H, Moon IS, Kondon H et al (2005) BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation, and interacts with alpha, but not beta, subunit of Ca2+/calmodulin-dependent protein kinase II. J Neurochem 92:647–659CrossRefPubMedGoogle Scholar
  165. 165.
    Grueter CE, Abiria SA, Wu Y, Anderson ME, Colbran RJ (2008) Differential regulated interactions of calcium/calmodulin-dependent protein kinase II with isoforms of voltage-gated calcium channel beta subunits. Biochemistry 47(6):1760–1767CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Hell JW, Appleyard SM, Yokoyama CT, Warner C, Catterall WA (1994) Differential phosphorylation of two size forms of the N-type calcium channel alpha 1 subunit which have different COOH termini. J Biol Chem 269(10):7390–7396PubMedGoogle Scholar
  167. 167.
    Lu CS, Hodge JJ, Mehren J, Sun XX, Griffith LC (2003) Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation. Neuron 40(6):1185–1197CrossRefPubMedGoogle Scholar
  168. 168.
    Ishiguro K, Green T, Rapley J, Wachtel H, Giallourakis C, Landry A et al (2006) Ca2+/calmodulin-dependent protein kinase II is a modulator of CARMA1-mediated NF-kappaB activation. Mol Cell Biol 26(14):5497–5508CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Atkins CM, Nozaki N, Shigeri Y, Soderling TR (2004) Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J Neurosci 24(22):5193–5201CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    McNeill RB, Colbran RJ (1995) Interaction of autophosphorylated Ca2+/calmodulin-dependent protein kinase II with neuronal cytoskeletal proteins. Characterization of binding to a 190-kDa postsynaptic density protein. J Biol Chem 270(17):10043–10049CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Robison AJ, Bass MA, Jiao Y, MacMillan LB, Carmody LC, Bartlett RK et al (2005) Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2. J Biol Chem 280(42):35329–35336CrossRefGoogle Scholar
  172. 172.
    Jefferson AB, Schulman H (1991) Phosphorylation of microtubule-associated protein-2 in GH3 cells. Regulation by cAMP and by calcium. J Biol Chem 266(1):346–354PubMedGoogle Scholar
  173. 173.
    Yamamoto H, Fukunaga K, Goto S, Tanaka E, Miyamoto E (1985) Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation. J Neurochem 44(3):759–768CrossRefGoogle Scholar
  174. 174.
    Shoju H, Sueyoshi N, Ishida A, Kameshita I (2005) High level expression and preparation of autonomous Ca2+/calmodulin-dependent protein kinase II in Escherichia coli. J Biochem 138(5):605–611CrossRefGoogle Scholar
  175. 175.
    Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411(6839):801–805CrossRefPubMedGoogle Scholar
  176. 176.
    Gardoni F, Caputi A, Cimino M, Pastorino L, Cattabeni F, Di Luca M (1998) Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem 71(4):1733–1741CrossRefPubMedGoogle Scholar
  177. 177.
    Gardoni F, Schrama LH, van Dalen JJ, Gispen WH, Cattabeni F, Di Luca M (1999) AlphaCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett 456(3):394–398CrossRefPubMedGoogle Scholar
  178. 178.
    Yamashita T, Inui S, Maeda K, Hua DR, Takagi K, Fukunaga K et al (2006) Regulation of CaMKII by alpha4/PP2Ac contributes to learning and memory. Brain Res 1082(1):1–10CrossRefPubMedGoogle Scholar
  179. 179.
    Fahrmann M, Erfmann M, Beinbrech G (2002) Binding of CaMKII to the giant muscle protein projectin: stimulation of CaMKII activity by projectin. Biochim Biophys Acta 1569(1–3):127–134CrossRefPubMedGoogle Scholar
  180. 180.
    Moyers JS, Bilan PJ, Zhu J, Kahn CR (1997) Rad and Rad-related GTPases interact with calmodulin and calmodulin-dependent protein kinase II. J Biol Chem 272(18):11832–11839CrossRefPubMedGoogle Scholar
  181. 181.
    Gangopadhyay SS, Gallant C, Sundberg EJ, Lane WS, Morgan KG (2008) Regulation of Ca2+/calmodulin kinase II by a small C-terminal domain phosphatase. Biochem J 412(3):507–516CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Baratier J, Peris L, Brocard J, Gory-Faure S, Dufour F, Bosc C et al (2006) Phosphorylation of microtubule-associated protein STOP by calmodulin kinase II. J Biol Chem 281(28):19561–19569CrossRefPubMedGoogle Scholar
  183. 183.
    Benfenati F, Valtorta F, Rubenstein JL, Gorelick FS, Greengard P, Czernik AJ (1992) Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature. 359(6394):417–420CrossRefPubMedGoogle Scholar
  184. 184.
    Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K (2001) Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. Febs Letters 490(1–2):15–22CrossRefPubMedGoogle Scholar
  185. 185.
    Lehmann IT, Bobrovskaya L, Gordon SL, Dunkley PR, Dickson PW (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem 281(26):17644–17651CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kathryn Anne Skelding
    • 1
    • 2
  • John A. P. Rostas
    • 2
    • 3
  1. 1.Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineThe University of NewcastleCallaghanAustralia
  2. 2.Hunter Medical Research InstituteNew Lambton HeightsAustralia
  3. 3.Priority Research Centre for Brain and Mental Health, and Priority Research Centre for Stroke and Brain Injury, School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineThe University of NewcastleCallaghanAustralia

Personalised recommendations