Targeting Transient Receptor Potential Channels by MicroRNAs Drives Tumor Development and Progression

  • Giorgio SantoniEmail author
  • Maria Beatrice Morelli
  • Matteo Santoni
  • Massimo Nabissi
  • Oliviero Marinelli
  • Consuelo Amantini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1131)


Transient receptor potential (TRP) cation channel superfamily plays important roles in a variety of cellular processes such polymodal cellular sensing, adhesion, polarity, proliferation, differentiation and apoptosis. The expression of TRP channels is strictly regulated and their de-regulation can stimulate cancer development and progression.

In human cancers, specific miRNAs are expressed in different tissues, and changes in the regulation of gene expression mediated by specific miRNAs have been associated with carcinogenesis. Several miRNAs/TRP channel pairs have been reported to play an important role in tumor biology. Thus, the TRPM1 gene regulates melanocyte/melanoma behaviour via TRPM1 and microRNA-211 transcripts. Both miR-211 and TRPM1 proteins are regulated through microphthalmia-associated transcription factor (MIFT) and the expression of miR-211 is decreased during melanoma progression. Melanocyte phenotype and melanoma behaviour strictly depend on dual TRPM1 activity, with loss of TRPM1 protein promoting melanoma aggressiveness and miR-211 expression supporting tumour suppressor. TRPM3 plays a major role in the development and progression of human clear cell renal cell carcinoma (ccRCC) with von Hippel-Lindau (VHL) loss. TRPM3, a direct target of miR-204, is enhanced in ccRCC with inactivated or deleted VHL. Loss of VHL inhibits miR-204 expression that lead to increased oncogenic autophagy. Therefore, the understanding of specific TRP channels/miRNAs molecular pathways in distinct tumors could provide a clinical rationale for target therapy in cancer.


TRP channels miRNAs Channelopathies Tumor progression Target therapy Calcium/calcineurin signaling TRPV TRPA1 TRPP TRPM 



proto-oncogene protein B-raf


BRAF harbouring somatic missense mutations at the amino acid residue V600


POU-domain transcription factor (POU3F2)


human clear cell renal cell carcinoma


colorectal cancer


endometrial cancer


epithelial ovarian cancer


erythroblastosis virus E26 oncogene homolog 1


fibroblast growth factor receptor type 2


hepatocellular carcinoma cells


lung adenocarcinoma


microphthalmia-associated transcription factor




messenger RNA


metastasis suppressor gene 1


Na+/Ca2+ exchanger-1


nuclear factor of activated T-cells 5


nuclear factor of activated T-cells isoform c3


non-small cell lung carcinoma


ovarian cancer


prostate cancer


Polycystic kidney disease


primary miRNAs


Tropomyosin receptor kinase B


Transient receptor potential ankyrin


Transient receptor potential canonical


Transient receptor potential melastatin


Transient receptor potential polycystic


Transient receptor potential vanilloid


untranslated region


von Hippel-Lindau


  1. 1.
    Zheng J (2013) Molecular mechanism of TRP channels. Compr Physiol 3:221–242PubMedPubMedCentralGoogle Scholar
  2. 2.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 12:281–297CrossRefGoogle Scholar
  3. 3.
    Wang Z (2013) miRNA in the regulation of ion channel/transporter expression. Compr Physiol 3:599–653PubMedGoogle Scholar
  4. 4.
    Hyun YJ, Changchun X (2015) MicroRNA mechanisms of action: what have we learned from mice? Front Genet 6:328Google Scholar
  5. 5.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 12:495–500CrossRefGoogle Scholar
  6. 6.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA (2005) MicroRNA expression profiles classify human cancers. Nature 12:834–838CrossRefGoogle Scholar
  7. 7.
    Mazar J, DeYoung K, Khaitan D, Meister E, Almodovar A, Goydos J, Ray A, Perera RJ (2010) The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS One 5:e13779CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Guo H, Carlson JA, Slominski A (2012) Role of TRPM in melanocytes and melanoma. Exp Dermatol 21(9):650–654CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bao W, Wang HH, Tian FJ, He XY, Qiu MT, Wang JY (2013) A TrkB-STAT3-miR-204-5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells. Mol Cancer 12:155CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Banno K, Yanokura M, Kisu I, Yamagami W, Susumu N, Aoki D (2013) MicroRNAs in endometrial cancer. Int J Clin Oncol 12:186–192CrossRefGoogle Scholar
  11. 11.
    Erdmann K, Kaulke K, Thomae C, Huebner D, Sergon M, Froehner M, Wirth MP, Fuessel S (2014) Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs. BMC Cancer 14:82CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3(7):e131CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Australian Institute of Health and Welfare (AIHW) (2008) Australia Cancer Incidence and Mortality (ACIM) books: incidence numbers and rates from 1982 to 2005, and mortality numbers and rates from 1968 to 2006Google Scholar
  14. 14.
    Thompson JF, Scolyer RA, Kefford RF (2005) Cutaneous melanoma. Lancet 365(9460):687–701CrossRefPubMedGoogle Scholar
  15. 15.
    Deeds J, Cronin F, Duncan LM (2000) Patterns of melastatin mRNA expression in melanocytic tumors. Hum Pathol 31(11):1346–1356CrossRefPubMedGoogle Scholar
  16. 16.
    Miller AJ, Du J, Rowan S, Hershey CL, Widlund HR, Fisher DE (2004) Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res 64(2):509–516CrossRefPubMedGoogle Scholar
  17. 17.
    Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, Chen PH, Li S, Fletcher AL, Yokoyama S, Scott KL, Garraway LA, Song JS, Granter SR, Turley SJ, Fisher DE, Novina CD (2010) Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell 40:841–849CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Boyle GM, Woods SL, Bonazzi VF, Stark MS, Hacker E, Aoude LG, Dutton-Regester K, Cook AL, Sturm RA, Hayward NK (2011) Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res 24:525–537CrossRefPubMedGoogle Scholar
  19. 19.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutation of the BRAF gene in human cancer. Nature 417:949–954CrossRefGoogle Scholar
  20. 20.
    Lunavat TR, Cheng L, Einarsdottir BO, Olofsson Bagge R, Veppil Muralidharan S, Sharples RA, Lässer C, Gho YS, Hill AF, Nilsson JA, Lötvall J (2017) BRAF(V600) inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc Natl Acad Sci U S A 114(29):E5930–E5939CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    De Luca T, Pelosi A, Trisciuoglio D, D’Aguanno S, Desideri M, Farini V, Di Martile M, Bellei B, Tupone MG, Condiloro A, Regazzo G, Rizzo MG, Del Bufalo D (2016) miR-211 and MIFT modulation by Bcl-2 protein in melanoma cells. Mol Carcinog 55:2304–2312CrossRefPubMedGoogle Scholar
  22. 22.
    Wellbrock C, Arozarena I (2015) Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targed therapy. Pigment Cell Melanoma Res 28:390–406CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Margue C, Philippidou D, Reinsbach SE, Schmitt M, Behrmann I, Kreis S (2013) New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One 8(9):e73473CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Natrajan R, Louhelainen J, Williams S, Laye J, Knowles MA (2003) High-resolution deletion mapping of 15q13.2-q21.1 in transitional cell carcinoma of the bladder. Cancer Res 63:7657–7662PubMedGoogle Scholar
  25. 25.
    Poetsch M, Kleist B (2006) Loss of heterozygosity at 15q21.3 correlates with occurrence of metastases in head and neck cancer. Mod Pathol 19:1462–1469CrossRefPubMedGoogle Scholar
  26. 26.
    Xia B, Yang S, Liu T, Lou G (2015) miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer 14:57CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tao F, Tian X, Ruan S, Shen M, Zhang Z (2018) miR-211 sponges lncRNA MALAT1 to suppress tumor growth and progression through inhibiting PHF19 in ovarian carcinoma. FASEB J 6:fj201800495RRGoogle Scholar
  28. 28.
    He DX, Gu XT, Jiang L, Jin J, Ma X (2014) A methylation-based regulatory network for microRNA 320a in chemoresistant breast cancer. Mol Pharmacol 86(5):536–547CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yu S, Qin X, Chen T, Zhou L, Xu X, Feng J (2017) MicroRNA-106b-5p regulates cisplatin chemosensitivity by targeting polycystic kidney disease-2 in non-small-cell lung cancer. Anti-Cancer Drugs 28(8):852–860CrossRefPubMedGoogle Scholar
  30. 30.
    Iino I, Kikuchi H, Myyazaki S, Hiramatsu Y, Ohta M, Kamiya K, Kusama Y, Baba S, Setou M, Konno H (2013) Effect of mir-122 and its target gene cationic aminoacid transporter 1 on colorectal liver metastasis. Cancer Sci 104:624–630CrossRefPubMedGoogle Scholar
  31. 31.
    Shapiro D, Deering-Rice CE, Romero EG, Hughen RW, Light AR, Veranth JM, Reilly CA (2013) Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material. Chem Res Toxicol 26(5):750–758CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zygmunt PM, Hogestatt ED (2014) Trpa1. Handb Exp Pharmacol 222:583–630CrossRefPubMedGoogle Scholar
  33. 33.
    Berrout J, Kyriakopoulou E, Moparthi L, Hogea AS, Berrout L, Ivan C, Lorger M, Boyle J, Peers C, Muench S, Gomez JE, Hu X, Hurst C, Hall T, Umamaheswaran S, Wesley L, Gagea M, Shires M, Manfield I, Knowles MA, Davies S, Suhling K, Gonzalez YT, Carragher N, Macleod K, Abbott NJ, Calin GA, Gamper N, Zygmunt PM, Timsah Z (2017) TRPA1-FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nat Commun 8(1):947CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129CrossRefGoogle Scholar
  35. 35.
    Timsah Z, Berrout J, Suraokar M, Behrens C, Song J, Lee JJ, Ivan C, Gagea M, Shires M, Hu X, Vallien C, Kingsley CV, Wistuba I, Ladbury JE (2015) Expression pattern of FGFR2, Grb2 and Plcγ1 acts as a novel prognostic marker of recurrence recurrence-free survival in lung adenocarcinoma. Am J Cancer Res 5(10):3135–3148PubMedPubMedCentralGoogle Scholar
  36. 36.
    Peng X, Liu WL (2015) MiR-142-3p functions as a potential tumour suppressor directly targeting HMGB1 in non-small-cell lung carcinoma. Int J Clin Exp Pathol 8(9):10800Google Scholar
  37. 37.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90CrossRefGoogle Scholar
  38. 38.
    Zhang L, Barritt GJ (2004) Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res 64(22):8365–8373CrossRefGoogle Scholar
  39. 39.
    Zhang J, Liang J, Huang J (2016) Downregulated microRNA-26a modulates prostate cancer cell proliferation and apoptosis by targeting COX-2. Oncol Lett 12(5):3397–3402CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tong MH, Mitchell DA, McGowan SD, Evanoff R, Griswold MD (2012) Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 86(3):72CrossRefPubMedGoogle Scholar
  41. 41.
    Patel V, Williams D, Hajarnis S, Hunter R, Pontoglio M, Somlo S, Igarashi P (2013) miR-17∼92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A 110(26):10765–10770CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sun H, Li QW, Lv XY, Ai JZ, Yang QT, Duan JJ, Bian GH, Xiao Y, Wang YD, Zhang Z, Liu YH, Tan RZ, Yang Y, Wei YQ, Zhou Q (2010) MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol Biol Rep 37:2951–2958CrossRefPubMedGoogle Scholar
  43. 43.
    Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133(2):217–222CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM, MacPherson D (2011) miR-17∼92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 25(16):1734–1745CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, Forrest AR, Kolle G, Gabrielli B, Grimmond SM (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9(8):R127CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843CrossRefPubMedGoogle Scholar
  47. 47.
    Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A, Croce CM (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24(29):4677–4684CrossRefPubMedGoogle Scholar
  48. 48.
    Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva WA Jr, Falcão RP, Zago MA (2007) miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40(11):1435–1440CrossRefPubMedGoogle Scholar
  49. 49.
    Xin J, Zheng L-M, Sun D-K, Li X-F, Xu P, Tian L-Q (2018) miR-204 functions as a tumor suppressor gene, at least partly by suppressing CYP27A1 in glioblastoma. Oncol Lett 16:1439–1448PubMedPubMedCentralGoogle Scholar
  50. 50.
    Ge Y, Yan X, Jin Y, Yang X, Yu X, Zhou L, Han S, Yuan Q, Yang M (2015) fMiRNA-192 and miRNA-204 directly suppress lncRNA HOTTIP and interrupt GLS1-mediated glutaminolysis in hepatocellular carcinoma. Terracciano L ed. PLoS Genet 11(12):e1005726CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kuwano Y, Nishida K, Kajita K, Satake Y, Akaike Y, Fujita K, Kano S, Masuda K, Rokutan K (2015) Transformer 2beta and miR-204 regulate apoptosis through competitive binding to 3′ UTR of BCL2 mRNA. Cell Death Differ 22(5):815–825CrossRefPubMedGoogle Scholar
  52. 52.
    Imam JS, Plyler JR, Bansal H, Prajapati S, Bansal S, Rebeles J, Chen HI, Chang YF, Panneerdoss S, Zoghi B, Buddavarapu KC, Broaddus R, Hornsby P, Tomlinson G, Dome J, Vadlamudi RK, Pertsemlidis A, Chen Y, Rao MK (2012) Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One 7(12):e52397CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang L, Tian H, Yuan J, Wu H, Wu J, Zhu X (2015) CONSORT. Sam68 is directly regulated by MiR-204 and promotes the self-renewal potential of breast cancer cells by activating the Wnt/Beta-catenin signaling pathway. Medicine 94(49):e2228CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hall DP, Cost NG, Hegde S, Kellner E, Mikhaylova O, Stratton Y, Ehmer B, Abplanalp WA, Pandey R, Biesiada J, Harteneck C, Plas DR, Meller J, Czyzyk-Krzeska MF (2014) TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma. Cancer Cell 26(5):738–753CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cecconi F, Jäättelä M (2014) Targeting ions-induced autophagy in cancer. Cancer Cell 26(5):599–600CrossRefPubMedGoogle Scholar
  56. 56.
    Cost NG, Czyzyk-Krzeska MF (2015) Regulation of autophagy by two products of one gene: TRPM3 and miR-204. Mol Cell Oncol 2(4):e1002712CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Harteneck C (2005) Function and pharmacology of TRPM cation channels. Naunyn Schmiedeberg’s Arch Pharmacol 371:307–314CrossRefGoogle Scholar
  58. 58.
    Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, Pace KT, Youssef GM (2010) Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem 43:150–158CrossRefPubMedGoogle Scholar
  59. 59.
    Osanto S, Qin Y, Buermans HP, Berkers J, Lerut E, Goeman JJ, van Poppel H (2012) Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PLoS One 7:e38298CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ma L, Deng X, Wu M, Zhang G, Huang J (2014) Down-regulation of miRNA-204 by LMP-1 enhances CDC42 activity and facilitates invasion of EBV-associated nasopharyngeal carcinoma cells. FEBS Lett 588(9):1562–1570CrossRefPubMedGoogle Scholar
  61. 61.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 12:11–30CrossRefGoogle Scholar
  62. 62.
    Zhu X, Shen H, Yin X, Long L, Chen X, Feng F, Liu Y, Zhao P, Xu Y, Li M, Xu W, Li Y (2017) IL-6R/STAT3/miR-204 feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells. Oncotarget 8(24):39154–39166PubMedPubMedCentralGoogle Scholar
  63. 63.
    Shapovalov G, Ritaine A, Skryma R, Prevarskaya N (2016) Role of TRP ion channels in cancer and tumorigenesis. Semin Immunopathol 38(3):357–369CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Xu J, Yang Y, Xie R, Liu J, Nie X, An J, Wen G, Liu X, Jin H, Tuo B (2018) The NCX1/TRPC6 complex mediates TGFβ-driven migration and invasion of human hepatocellular carcinoma cells. Cancer Res 78(10):2564–2576CrossRefPubMedGoogle Scholar
  65. 65.
    Wu J, Zheng C, Wang X, Yun S, Zhao Y, Liu L, Lu Y, Ye Y, Zhu X, Zhang C, Shi S, Liu Z (2015) MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes. J Clin Invest 125(11):4091–4106CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Liu Y, Zhou Y, Gong X, Zhang C (2017) MicroRNA-30a-5p inhibits the proliferation and invasion of gastric cells by targeting insulin-like growth factor 1 receptor. Exp Ther Med 14:173–180CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Selli C, Erac Y, Tosun M (2015) Simultaneous measurement of cytosolic and mitochondrial calcium levels: observations in TRPC1-silenced hepatocellular carcinoma cells. J Pharmacol Toxicol Methods 72:29–34CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang C, Chen X, Chen X, Wang X, Ji A, Jiang L, Sang F, Li F (2016) miR-135a acts as a tumor suppressor in gastric cancer in part by targeting KIFC1. Onco Targets Ther 9:3555–3563PubMedPubMedCentralGoogle Scholar
  69. 69.
    Wan X, Pu H, Huang W, Yang S, Zhang Y, Kong Z, Yang Z, Zhao P, Li A, Li T, Li Y (2016) Androgen-induced miR-135a acts as a tumor suppressor through downregulating RBAK and MMP11, and mediates resistance to androgen deprivation therapy. Oncotarget 7:51284–51300PubMedPubMedCentralGoogle Scholar
  70. 70.
    Yamada Y, Hidaka H, Seki N, Yoshino H, Yamasaki T, Itesako T, Nakagawa M, Enokida H (2013) Tumor-suppressive microRNA-135a inhibits cancer cell proliferation by targeting the c-MYC oncogene in renal cell carcinoma. Cancer Sci 104:304–312CrossRefPubMedGoogle Scholar
  71. 71.
    Wu S, Lin Y, Xu D, Chen J, Shu M, Zhou Y, Zhu W, Su X, Zhou Y, Qiu P, Yan G (2012) MiR-135a functions as a selective killer of malignant glioma. Oncogene 31:3866–3874CrossRefPubMedGoogle Scholar
  72. 72.
    Nagel R, le Sage C, Diosdad B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802CrossRefPubMedGoogle Scholar
  73. 73.
    Zhou W, Li X, Liu F, Xiao Z, He M, Shen S, Liu S (2012) MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Biochim Biophys Sin Shanghai 44:838–846CrossRefPubMedGoogle Scholar
  74. 74.
    He B, Liu F, Ruan J, Li A, Chen J, Li R, Shen J, Zheng D, Luo R (2012) Silencing TRPC1 expression inhibits invasion of CNE2 nasopharyngeal tumor cells. Oncol Rep 27:1548–1554CrossRefPubMedGoogle Scholar
  75. 75.
    Tajeddine N, Gailly P (2012) TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling. J Biol Chem 287:16146–16157CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Liu X, Zou J, Su J, Lu Y, Zhang J, Li L, Yin F (2016) Downregulation of transient receptor potential cation channel, subfamily C, member 1 contributes to drug resistance and high histological grade in ovarian cancer. Int J Oncol 48(1):243–252CrossRefPubMedGoogle Scholar
  77. 77.
    Tang W, Jiang Y, Mu X, Xu L, Cheng W, Wang X (2014) MiR-135a functions as a tumor suppressor in epithelial ovarian cancer and regulates HOXA10 expression. Cell Signal 26:1420–1426CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Giorgio Santoni
    • 1
    Email author
  • Maria Beatrice Morelli
    • 1
  • Matteo Santoni
    • 2
  • Massimo Nabissi
    • 1
  • Oliviero Marinelli
    • 1
    • 3
  • Consuelo Amantini
    • 3
  1. 1.School of Pharmacy, Experimental Medicine SectionUniversity of CamerinoCamerinoItaly
  2. 2.Clinic and Oncology UnitMacerata HospitalMacerataItaly
  3. 3.School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly

Personalised recommendations