Canonical Transient Potential Receptor-3 Channels in Normal and Diseased Airway Smooth Muscle Cells

  • Yong-Xiao Wang
  • Lan Wang
  • Yun-Min ZhengEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1131)


All seven canonical transient potential receptor (TRPC1–7) channel members are expressed in mammalian airway smooth muscle cells (ASMCs). Among this family, TRPC3 channel plays an important role in the control of the resting [Ca2+]i and agonist-induced increase in [Ca2+]i. This channel is significantly upregulated in molecular expression and functional activity in airway diseases. The upregulated channel significantly augments the resting [Ca2+]i and agonist-induced increase in [Ca2+]i, thereby exerting a direct and essential effect in airway hyperresponsiveness. The increased TRPC3 channel-mediated Ca2+ signaling also results in the transcription factor nuclear factor-κB (NF-κB) activation via protein kinase C-α (PKCα)-dependent inhibitor of NFκB-α (IκBα) and calcineurin-dependent IκBβ signaling pathways, which upregulates cyclin-D1 expression and causes cell proliferation, leading to airway remodeling. TRPC3 channel may further interact with intracellular release Ca2+ channels, Orai channels and Ca2+-sensing stromal interaction molecules, mediating important cellular responses in ASMCs and the development of airway diseases.


Canonical transient potential receptor channel Inositol 1,4,5-trisphosphate receptor Ryanodine receptor Orai channel Stromal interaction molecule Nuclear factor κB Protein kinase C Calcineurin Airway hyperresponsiveness Airway remodeling Airway diseases 



Intracellular Ca2+ concentration


Airway smooth muscle cells


chronic obstructive pulmonary disease




G protein-coupled receptor


Inositol 1,4,5-trisphosphate


IP3 receptor


Nuclear factor κB inhibitor


Jun amino-terminal kinase




Nuclear factor κB


Open probability


Non-selective cation channel




Phosphatidylinositol 4,5-bisphosphate


Protein kinase C-α


Phospholipase C


Ryanodine receptor


Store-operated Ca2+ entry


Sarcoplasmic reticulum


Stromal interaction molecule


Tumor necrosis factor-α


Canonical transient potential receptor


Membrane potential


  1. 1.
    Montell C, Jones K, Hafen E, Rubin G (1985) Rescue of the drosophila phototransduction mutation trp by germline transformation. Science (New York, NY) 230(4729):1040–1043CrossRefGoogle Scholar
  2. 2.
    Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a drosophila store-operated channel. Proc Natl Acad Sci U S A 92(21):9652–9656PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ong HL, Brereton HM, Harland ML, Barritt GJ (2003) Evidence for the expression of transient receptor potential proteins in Guinea pig airway smooth muscle cells. Respirology 8(1):23–32PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Corteling RL, Li S, Giddings J, Westwick J, Poll C, Hall IP (2004) Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. Am J Respir Cell Mol Biol 30(2):145–154PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME (2006) Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol 35(2):243–251PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ong HL, Chen J, Chataway T, Brereton H, Zhang L, Downs T et al (2002) Specific detection of the endogenous transient receptor potential (TRP)-1 protein in liver and airway smooth muscle cells using immunoprecipitation and Western-blot analysis. Biochem J 364(Pt 3):641–648PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ay B, Prakash YS, Pabelick CM, Sieck GC (2004) Store-operated Ca2+ entry in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 286(5):L909–L917PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Godin N, Rousseau E (2007) TRPC6 silencing in primary airway smooth muscle cells inhibits protein expression without affecting OAG-induced calcium entry. Mol Cell Biochem 296(1–2):193–201PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Xiao JH, Zheng YM, Liao B, Wang YX (2010) Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. Am J Respir Cell Mol Biol 43(1):17–25PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Snetkov VA, Pandya H, Hirst SJ, Ward JP (1998) Potassium channels in human fetal airway smooth muscle cells. Pediatr Res 43(4 Pt 1):548–554PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Snetkov VA, Ward JP (1999) Ion currents in smooth muscle cells from human small bronchioles: presence of an inward rectifier K+ current and three types of large conductance K+ channel. Exp Physiol 84(5):835–846PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Snetkov VA, Hapgood KJ, McVicker CG, Lee TH, Ward JP (2001) Mechanisms of leukotriene D4-induced constriction in human small bronchioles. Br J Pharmacol 133(2):243–252PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Helli PB, Janssen LJ (2008) Properties of a store-operated nonselective cation channel in airway smooth muscle. Eur Respir J 32(6):1529–1539PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Albert AP, Large WA (2001) Comparison of spontaneous and noradrenaline-evoked non-selective cation channels in rabbit portal vein myocytes. J Physiol 530(Pt 3):457–468PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hirota S, Helli P, Janssen LJ (2007) Ionic mechanisms and Ca2+ handling in airway smooth muscle. Eur Respir J 30(1):114–133PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Liu XS, Xu YJ (2005) Potassium channels in airway smooth muscle and airway hyperreactivity in asthma. Chin Med J 118(7):574–580PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Song T, Hao Q, Zheng YM, Liu QH, Wang YX (2015) Inositol 1,4,5-trisphosphate activates TRPC3 channels to cause extracellular Ca2+ influx in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 309(12):L1455–L1466PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Janssen LJ, Sims SM (1992) Acetylcholine activates non-selective cation and chloride conductances in canine and Guinea-pig tracheal myocytes. J Physiol 453:197–218PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wang YX, Fleischmann BK, Kotlikoff MI (1997) M2 receptor activation of nonselective cation channels in smooth muscle cells: calcium and Gi/G(o) requirements. Am J Phys 273(2 Pt 1):C500–C508CrossRefGoogle Scholar
  20. 20.
    Fleischmann BK, Wang YX, Kotlikoff MI (1997) Muscarinic activation and calcium permeation of nonselective cation currents in airway myocytes. Am J Phys 272(1 Pt 1):C341–C349CrossRefGoogle Scholar
  21. 21.
    Wang YX, Kotlikoff MI (2000) Signalling pathway for histamine activation of non-selective cation channels in equine tracheal myocytes. J Physiol 523(Pt 1):131–138PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yamashita T, Kokubun S (1999) Nonselective cationic currents activated by acetylcholine in swine tracheal smooth muscle cells. Can J Physiol Pharmacol 77(10):796–805PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Murray RK, Kotlikoff MI (1991) Receptor-activated calcium influx in human airway smooth muscle cells. J Physiol 435:123–144PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Parvez O, Voss AM, de Kok M, Roth-Kleiner M, Belik J (2006) Bronchial muscle peristaltic activity in the fetal rat. Pediatr Res 59(6):756–761PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Dai JM, Kuo KH, Leo JM, Pare PD, van Breemen C, Lee CH (2007) Acetylcholine-induced asynchronous calcium waves in intact human bronchial muscle bundle. Am J Respir Cell Mol Biol 36(5):600–608PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Dai JM, Kuo KH, Leo JM, van Breemen C, Lee CH (2006) Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle. Am J Physiol Lung Cell Mol Physiol 290(3):L459–L469PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gorenne I, Labat C, Gascard JP, Norel X, Nashashibi N, Brink C (1998) Leukotriene D4 contractions in human airways are blocked by SK&F 96365, an inhibitor of receptor-mediated calcium entry. J Pharmacol Exp Ther 284(2):549–552PubMedPubMedCentralGoogle Scholar
  28. 28.
    Hirota S, Janssen LJ (2007) Store-refilling involves both L-type calcium channels and reverse-mode sodium-calcium exchange in airway smooth muscle. Eur Respir J 30(2):269–278PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23(2):297–328PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wang L, Li J, Zhang J, He Q, Weng X, Huang Y et al (2017) Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse. Biochem Biophys Res Commun 484(1):209–217PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Song T, Zheng YM, Vincent PA, Cai D, Rosenberg P, Wang YX (2016) Canonical transient receptor potential 3 channels activate NF-kappaB to mediate allergic airway disease via PKC-alpha/IkappaB-alpha and calcineurin/IkappaB-beta pathways. FASEB J 30(1):214–229PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wylam ME, Sathish V, VanOosten SK, Freeman M, Burkholder D, Thompson MA et al (2015) Mechanisms of cigarette smoke effects on human airway smooth muscle. PLoS One 10(6):e0128778PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wang YX, Zheng YM (2011) Molecular expression and functional role of canonical transient receptor potential channels in airway smooth muscle cells. Adv Exp Med Biol 704:731–747PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Vertegaal AC, Kuiperij HB, Yamaoka S, Courtois G, van der Eb AJ, Zantema A (2000) Protein kinase C-alpha is an upstream activator of the IkappaB kinase complex in the TPA signal transduction pathway to NF-kappaB in U2OS cells. Cell Signal 12(11–12):759–768PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hai CM (2007) Airway smooth muscle cell as therapeutic target of inflammation. Curr Med Chem 14(1):67–76PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Walczak-Drzewiecka A, Ratajewski M, Wagner W, Dastych J (2008) HIF-1alpha is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. J Immunol 181(3):1665–1672PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Said SI, Hamidi SA, Gonzalez Bosc L (2010) Asthma and pulmonary arterial hypertension: do they share a key mechanism of pathogenesis? Eur Respir J 35(4):730–734PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rosenberg P, Hawkins A, Stiber J, Shelton JM, Hutcheson K, Bassel-Duby R et al (2004) TRPC3 channels confer cellular memory of recent neuromuscular activity. Proc Natl Acad Sci U S A 101(25):9387–9392PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20(10):1660–1670PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Poteser M, Schleifer H, Lichtenegger M, Schernthaner M, Stockner T, Kappe CO et al (2011) PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proc Natl Acad Sci U S A 108(26):10556–10561PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhang X, Zhao Z, Ma L, Guo Y, Li X, Zhao L et al (2018) The effects of transient receptor potential channel (TRPC) on airway smooth muscle cell isolated from asthma model mice. J Cell Biochem 119(7):6033–6044PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Xiao JH, Wang YX, Zheng YM (2014) Transient receptor potential and Orai channels in airway smooth muscle cells. In: Wang YX (ed) Calcium signaling in airway smooth muscle cells. Springer, Cham, pp 35–45CrossRefGoogle Scholar
  44. 44.
    Ong HL, Ambudkar IS (2017) STIM-TRP pathways and microdomain organization: contribution of TRPC1 in store-operated Ca2+ entry: impact on Ca2+ signaling and cell function. Adv Exp Med Biol 993:159–188PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Song T, Zheng Y-M, Wang YX (2014) Calcium signaling in airway smooth muscle Remodeling. In: YX W (ed) Calcium signaling in airway smooth muscle cells. Springer, Cham, pp 393–407CrossRefGoogle Scholar
  46. 46.
    Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392(6679):933–936PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zou JJ, Gao YD, Geng S, Yang J (2011) Role of STIM1/Orai1-mediated store-operated Ca(2)(+) entry in airway smooth muscle cell proliferation. J Appl Physiol (1985) 110(5):1256–1263CrossRefGoogle Scholar
  48. 48.
    Spinelli AM, Gonzalez-Cobos JC, Zhang X, Motiani RK, Rowan S, Zhang W et al (2012) Airway smooth muscle STIM1 and Orai1 are upregulated in asthmatic mice and mediate PDGF-activated SOCE, CRAC currents, proliferation, and migration. Pflugers Archiv Eur J Physiol 464(5):481–492CrossRefGoogle Scholar
  49. 49.
    Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Feske S, Prakriya M (2013) Conformational dynamics of STIM1 activation. Nat Struct Mol Biol 20(8):918–919PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ogawa A, Firth AL, Smith KA, Maliakal MV, Yuan JX (2012) PDGF enhances store-operated Ca2+ entry by upregulating STIM1/Orai1 via activation of Akt/mTOR in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 302(2):C405–C411PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Peel SE, Liu B, Hall IP (2008) ORAI and store-operated calcium influx in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38(6):744–749PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Peel SE, Liu B, Hall IP (2006) A key role for STIM1 in store operated calcium channel activation in airway smooth muscle. Respir Res 7:119PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104(11):4682–4687PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R et al (2014) Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem 289(10):6372–6382PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Brightbill HD, Jeet S, Lin Z, Yan D, Zhou M, Tan M et al (2010) Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. J Clin Invest 120(6):2218–2229PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Albert AP, Piper AS, Large WA (2005) Role of phospholipase D and diacylglycerol in activating constitutive TRPC-like cation channels in rabbit ear artery myocytes. J Physiol 566(Pt 3):769–780PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Albert AP, Pucovsky V, Prestwich SA, Large WA (2006) TRPC3 properties of a native constitutively active Ca2+−permeable cation channel in rabbit ear artery myocytes. J Physiol 571(Pt 2):361–369PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mei L, Zheng YM, Wang YX (2014) Ryanodine and inositol trisphosphate receptors/Ca2+ release channels in airway smooth muscle cells. In: Wang YX (ed) Calcium signaling in airway smooth muscle cells. Springer, Cham, pp 1–20Google Scholar
  60. 60.
    Liu QH, Zheng YM, Korde AS, Yadav VR, Rathore R, Wess J et al (2009) Membrane depolarization causes a direct activation of G protein-coupled receptors leading to local Ca2+ release in smooth muscle. Proc Natl Acad Sci U S A 106(27):11418–11423PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Liu QH, Savoia C, Wang YX, Zheng YM (2014) Local calcium signaling in airway smooth muscle cells. In: YX W (ed) Calcium signaling in airway smooth muscle cells. Springer, Cham, pp 107–120CrossRefGoogle Scholar
  62. 62.
    Adebiyi A, Thomas-Gatewood CM, Leo MD, Kidd MW, Neeb ZP, Jaggar JH (2012) An elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension. Hypertension 60(5):1213–1219PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Xi Q, Adebiyi A, Zhao G, Chapman KE, Waters CM, Hassid A et al (2008) IP3 constricts cerebral arteries via IP3 receptor-mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2+ release. Circ Res 102(9):1118–1126PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Prakash YS (2016) Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 311(6):L1113–L1l40PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Panettieri RA, Pera T, Liggett SB, Benovic JL, Penn RB (2018) Pepducins as a potential treatment strategy for asthma and COPD. Curr Opin Pharmacol 40:120–125PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Alves MF, da Fonseca DV, de Melo SAL, Scotti MT, Scotti L, Dos Santos SG et al (2018) New therapeutic targets and drugs for the treatment of asthma. Mini Rev Med Chem 18(8):684–696PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Prakash YS, Halayko AJ, Gosens R, Panettieri RA Jr, Camoretti-Mercado B, Penn RB (2017) An official American Thoracic Society research statement: current challenges facing research and therapeutic advances in airway remodeling. Am J Respir Crit Care Med 195(2):e4–e19PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tiapko O, Groschner K (2018) TRPC3 as a target of novel therapeutic interventions. Cell 7(7):83CrossRefGoogle Scholar
  69. 69.
    Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66(3):676–814CrossRefGoogle Scholar
  70. 70.
    Cui C, Merritt R, Fu L, Pan Z (2017) Targeting calcium signaling in cancer therapy. Acta Pharm Sin B 7(1):3–17PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A et al (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187(4):347–365CrossRefGoogle Scholar
  72. 72.
    Vestbo J, Hansen EF (2001) Airway hyperresponsiveness and COPD mortality. Thorax 56(Suppl 2):ii11–ii14PubMedPubMedCentralGoogle Scholar
  73. 73.
    Scichilone N, Battaglia S, La Sala A, Bellia V (2006) Clinical implications of airway hyperresponsiveness in COPD. Int J Chron Obstruct Pulmon Dis 1(1):49–60PubMedPubMedCentralGoogle Scholar
  74. 74.
    van den Berge M, Vonk JM, Gosman M, Lapperre TS, Snoeck-Stroband JB, Sterk PJ et al (2012) Clinical and inflammatory determinants of bronchial hyperresponsiveness in COPD. Eur Respir J 40(5):1098–1105PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Prakash YS (2013) Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 305(12):L912–L933PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fricker M, Deane A, Hansbro PM (2014) Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discovery 9(6):629–645CrossRefGoogle Scholar
  77. 77.
    Tkacova R, Dai DLY, Vonk JM, Leung JM, Hiemstra PS, van den Berge M et al (2016) Airway hyperresponsiveness in chronic obstructive pulmonary disease: a marker of asthma-chronic obstructive pulmonary disease overlap syndrome? J Allergy Clin Immunol 138(6):1571–1579. e10PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hogg JC (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet (London, UK) 364(9435):709–721CrossRefGoogle Scholar
  79. 79.
    Chung KF (2005) The role of airway smooth muscle in the pathogenesis of airway wall remodeling in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(4):347–354; discussion 71–2PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kim V, Rogers TJ, Criner GJ (2008) New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc 5(4):478–485PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Jones RL, Noble PB, Elliot JG, James AL (2016) Airway remodelling in COPD: it’s not asthma! Respirology 21(8):1347–1356PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kistemaker LE, Oenema TA, Meurs H, Gosens R (2012) Regulation of airway inflammation and remodeling by muscarinic receptors: perspectives on anticholinergic therapy in asthma and COPD. Life Sci 91(21–22):1126–1133PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Nayak AP, Deshpande DA, Penn RB (2018) New targets for resolution of airway remodeling in obstructive lung diseases. F1000 Res 7:680CrossRefGoogle Scholar
  84. 84.
    Dewar M, Curry RW Jr (2006) Chronic obstructive pulmonary disease: diagnostic considerations. Am Fam Physician 73(4):669–676PubMedPubMedCentralGoogle Scholar
  85. 85.
    Zeller M (2016) The deeming rule: keeping pace with the modern tobacco marketplace. Am J Respir Crit Care Med 194(5):538–540PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Temitayo Orisasami I, Ojo O (2016) Evaluating the effectiveness of smoking cessation in the management of COPD. Br J Nurs (Mark Allen Publishing) 25(14):786–791CrossRefGoogle Scholar
  87. 87.
    Vogel ER, VanOosten SK, Holman MA, Hohbein DD, Thompson MA, Vassallo R et al (2014) Cigarette smoke enhances proliferation and extracellular matrix deposition by human fetal airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 307(12):L978–L986PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Jiang HN, Zeng B, Zhang Y, Daskoulidou N, Fan H, Qu JM et al (2013) Involvement of TRPC channels in lung cancer cell differentiation and the correlation analysis in human non-small cell lung cancer. PLoS One 8(6):e67637PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kettunen E, Hernandez-Vargas H, Cros MP, Durand G, Le Calvez-Kelm F, Stuopelyte K et al (2017) Asbestos-associated genome-wide DNA methylation changes in lung cancer. Int J Cancer 141(10):2014–2029PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyUSA
  2. 2.Department of Cardiopulmonary Circulation, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations