Unsupervised Learning-Based Stock Keeping Units Segmentation

  • Ilya JacksonEmail author
  • Aleksandrs Avdeikins
  • Jurijs Tolujevs
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 68)


This paper reports on the unsupervised learning approach for solving stock keeping units segmentation problem. The dataset under consideration contains 2279 observations with 9 features. Since the “ground truth” is not known, the research aims to compare such clustering algorithms as K-means, mean-shift and DBSCAN based only on the internal evaluation, thus, this research may be considered as descriptive cluster analysis. Besides that, several preprocessing techniques are utilized in order to improve the result.


Clustering Inventory segmentation Inventory clustering Data mining Unsupervised machine learning Principal component analysis 


  1. 1.
    Ernst, R., Cohen, M.A.: Operations related groups (ORGs): a clustering procedure for production/inventory systems. J. Oper. Manage. 9(4), 574–598 (1990)Google Scholar
  2. 2.
    Jackson, I., Tolujevs, J., Reggelin, T.: The combination of discrete-event simulation and genetic algorithm for solving the stochastic multi-product inventory optimization problem. Transp. Telecommun. J. 19(3), 233–243 (2018)Google Scholar
  3. 3.
    Srinivasan, M., Moon, Y.B.: A comprehensive clustering algorithm for strategic analysis of supply chain networks. Comput. Ind. Eng. 36(3), 615–633 (1999)Google Scholar
  4. 4.
    Egas, C., Masel, D.: Determining warehouse storage location assignments using clustering analysis. In: 11th IMHRC Proceedings on Progress in Material Handling Research, Milwaukee, Wisconsin, USA, pp. 22–33 (2010)Google Scholar
  5. 5.
    Desai, V.L.: Evaluating Clustering methods for multi-echelon (r, Q) policy setting. In: Proceedings of the IIE Annual Conference, p. 352. Institute of Industrial and Systems Engineers (2007)Google Scholar
  6. 6.
    Yang, C.L., Nguyen, T.P.Q.: Constrained clustering method for class-based storage location assignment in warehouse. Ind. Manage. Data Syst. 116(4), 667–689 (2016)Google Scholar
  7. 7.
    GitHub repository “pumpy”. Accessed 10 July 2018
  8. 8.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(1), 2825–2830 (2011)Google Scholar
  9. 9.
    Zloba, E., Yatskiv, I.: Statistical methods of reproducing of missing data. Comput. Model. New Technol. 6(1), 51–61 (2002)Google Scholar
  10. 10.
    Jonsson, P., Wohlin, C.: An evaluation of k-nearest neighbour imputation using likert data. In: 10th International Symposium on Software Metrics, pp. 108–118 (2004)Google Scholar
  11. 11.
    Chen, J., Shao, J.: Jackknife variance estimation for nearest-neighbor imputation. J. Am. Stat. Assoc. 96(453), 260–269 (2001)Google Scholar
  12. 12.
    Batista, G.E., Monard, M.C.: A study of K-nearest neighbour as an imputation method. HIS 87, 251–260 (2002)Google Scholar
  13. 13.
    Mohamad, I.B., Usman, D.: Standardization and its effects on K-means clustering algorithm. Res. J. Appl. Sci. Eng. Technol. 6(17), 3299–3303 (2013)Google Scholar
  14. 14.
    Campos, G.O., Zimek, A., Sander, J., Campello, R.J., Micenková, B., Schubert, E., Assent, I., Houle, M.E.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min. Knowl. Disc. 30(4), 891–927 (2016)Google Scholar
  15. 15.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)Google Scholar
  16. 16.
    Tran, T.N., Drab, K., Daszykowski, M.: Revised DBSCAN algorithm to cluster data with dense adjacent clusters. Chemometr. Intell. Lab. Syst. 120, 92–96 (2013)Google Scholar
  17. 17.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)Google Scholar
  18. 18.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. -Theory Methods 3(1), 1–27 (1974)Google Scholar
  19. 19.
    Yatskiv, I., Gusarova, L.: The methods of cluster analysis results validation. Transp. Telecommun. 6(1), 19–26 (2005)Google Scholar
  20. 20.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ilya Jackson
    • 1
    Email author
  • Aleksandrs Avdeikins
    • 1
    • 2
  • Jurijs Tolujevs
    • 1
  1. 1.Transport and Telecommunication InstituteRigaLatvia
  2. 2.Trialto Latvia LTD, “Dominante”Kekavas n.Latvia

Personalised recommendations