Imaging of the Patellofemoral Joint

  • Carlos A. Encinas-Ullán
  • E. Carlos Rodríguez-Merchán


Imaging is paramount in the assessment of the patellofemoral (PF) joint as it provides an objective way of detecting morphological abnormalities. The anteroposterior (AP) plain radiograph is not very helpful for evaluating PF joint problems, but it is very important to assess the overall limb alignment and to identify lateral patellar dislocation or subluxation. Lateral plain radiograph is the most interesting view of the knee in PF joint analysis. It allows us to assess patellar height and trochlear dysplasia. The skyline view permits us to evaluate patellar tilt and patellar morphology. The advantage of computed tomography (CT) versus plain radiographs is that it allows the evaluation of patella in the last degrees of extension (0–30°). Axial CT cuts are useful for identifying osteochondral fractures and for visualizing the trochlear morphology. CT allows the superimposition of images and the evaluation of the TT-TG (tibial tubercle-trochlear groove) distance and the patellar tilt; additionally, CT can detect torsional deformities as external tibial torsion and femoral anteversion. In comparison with CT, MRI allows evaluating the PF joint in a similar way but with thinner cuts and without radiation for the patient. MRI has the ability of visualizing the articular surfaces and the soft tissue structures, such as the medial PF ligament (MPFL).


Patellofemoral Joint Imaging Radiographs CT scan MRI 


  1. 1.
    Maloney E, Stanescu AL, Ngo AV, Parisi MT, Iyer RS. The pediatric patella: normal development, anatomical variants and malformations, stability, imaging, and injury patterns. Semin Musculoskelet Radiol. 2018;22:81–94.CrossRefGoogle Scholar
  2. 2.
    Meyers AB, Laor T, Sharafinski M, Zbojniewicz AM. Imaging assessment of patellar instability and its treatment in children and adolescents. Pediatr Radiol. 2016;46:618–36.CrossRefGoogle Scholar
  3. 3.
    Dejour D, Saggin PR, Meyer X, Tavernier T. Standard X-ray examination: patellofemoral disorders. In: Zaffagnini S, Dejour D, Arendt EA, editors. Patellofemoral pain, instability, and arthritis. Berlin Heidelberg: Springer Verlag; 2010. p. 51–9.CrossRefGoogle Scholar
  4. 4.
    Insall J, Goldberg V, Salvati E. Recurrent dislocation and the high-riding patella. Clin Orthop Relat Res. 1972;88:67–9.CrossRefGoogle Scholar
  5. 5.
    Grelsamer RP, Meadows S. The modified Insall-Salvati ratio for patellar height. Clin Orthop Relat Res. 1992;282:170–6.Google Scholar
  6. 6.
    Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. Les rotules basses: a propos de 128 observations. Rev Chir Orthop. 1982;68:317–25.PubMedGoogle Scholar
  7. 7.
    Blackburne JS, Peel TE. A new method of measuring patellar height. J Bone Joint Surg. 1977;59B:241–2.CrossRefGoogle Scholar
  8. 8.
    Barnett AJ, Prentice M, Mandalia V, et al. Patellar height measurement in trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2009;17(12):1412.CrossRefGoogle Scholar
  9. 9.
    Seil R, Muller B, Georg T, et al. Reliability and interobserver variability in radiological patellar height ratios. Knee Surg Sports Traumatol Arthrosc. 2000;8:231–6.CrossRefGoogle Scholar
  10. 10.
    Bernageau J, Goutallier D, Debeyre J, Ferrane J. Nouvelle technique d’exploration de l’articulation f.moropatellaire. Incidences axiales quadriceps contract. et d.contract. Rev Chir Orthop Reparatrice Appar Mot. 1969;61(Suppl 2):286–9.Google Scholar
  11. 11.
    Chareancholvanich K, Narkbunnam R. Novel method of measuring patellar height ratio using a distal femoral reference point. Int Orthop. 2012;36:749–53.CrossRefGoogle Scholar
  12. 12.
    Batailler C, Neyret P. Trochlear dysplasia: imaging and treatment options. EFORT Open Rev. 2018;3:240–7.CrossRefGoogle Scholar
  13. 13.
    Dejour H, Walch G, Nove-Josserand L, et al. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.CrossRefGoogle Scholar
  14. 14.
    Malghem J, Maldague B. Depth insufficiency of the proximal trochlear groove on lateral radiographs of the knee: relation to patellar dislocation. Radiology. 1989;170:507–10.CrossRefGoogle Scholar
  15. 15.
    Wiberg G. Roentgenographic and anatomic studies on the femoropatellar joint. Acta Orthop Scand. 1941;12:319–410.CrossRefGoogle Scholar
  16. 16.
    Iwano T, Kurosawa H, Tokuyama H, Hoshikawa Y. Roentgenographic and clinical findings of patellofemoral osteoarthrosis with special reference to its relationship to femorotibial osteoarthrosis and etiologic factors. Clin Orthop Relat Res. 1990;252:190–7.Google Scholar
  17. 17.
    Delgado-Martínez AD, Rodríguez-Merchán EC, Ballesteros R, Luna JD. Reproducibility of patellofemoral CT scan measurements. Int Orthop. 2000;24:5–8.CrossRefGoogle Scholar
  18. 18.
    Delgado-Martínez AD, Estrada C, Rodríguez-Merchán EC, Atienza M, Ordóñez JM. CT scanning of the patellofemoral joint. The quadriceps relaxed or contracted? Int Orthop. 1996;20:159–62.CrossRefGoogle Scholar
  19. 19.
    Tanaka MJ, Elias JJ, Williams AA, Demehri S, Cosgarea AJ. Characterization of patellar maltracking using dynamic kinematic CT imaging in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc. 2016;24:3634–41.CrossRefGoogle Scholar
  20. 20.
    Sanders TG, Miller MD. A systematic approach to magnetic resonance imaging interpretation of sports medicine injuries of the shoulder. Am J Sports Med. 2005;33:1088–105.CrossRefGoogle Scholar
  21. 21.
    Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85(suppl 2):58–69.CrossRefGoogle Scholar
  22. 22.
    Tompkins MA, Rohr SR, Agel J, Arendt EA. Anatomic patellar instability risk factors in primary lateral patellar dislocations do not predict injury patterns: an MRI-based study. Knee Surg Sports Traumatol Arthrosc. 2018;26:677–84.CrossRefGoogle Scholar
  23. 23.
    Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy. 2003;19:717–21.CrossRefGoogle Scholar
  24. 24.
    Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft tissue restraints and osteochondral injuries of the inferomedial patella. Radiology. 2002;225:736–43.CrossRefGoogle Scholar
  25. 25.
    Kim HK, Shiraj S, Kang CH, Anton C, Kim DH, Horn PS. Patellofemoral instability in children: correlation between risk factors, injury patterns, and severity of cartilage damage. Am J Roentgenol. 2016;206:1321–8.CrossRefGoogle Scholar
  26. 26.
    Hash TW. Magnetic resonance imaging of the knee. Sports Health. 2013;5:78–107.CrossRefGoogle Scholar
  27. 27.
    Pfirrmann CW, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216:858–64.CrossRefGoogle Scholar
  28. 28.
    Askenberger M, Bengtsson Moström E, Ekström W, et al. Operative repair of medial patellofemoral ligament injury versus knee brace in children with an acute first-time traumatic patellar dislocation: a randomized controlled trial. Am J Sports Med. 2018;1:363546518770616.Google Scholar
  29. 29.
    Carrillon Y, Abidi H, Dejour D, et al. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology. 2000;216:582–5.CrossRefGoogle Scholar
  30. 30.
    Paiva M, Blønd L, Hölmich P, et al. Quality assessment of radiological measurements of trochlear dysplasia; a literature review. Knee Surg Sports Traumatol Arthrosc. 2018;26:746–55.CrossRefGoogle Scholar
  31. 31.
    Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc. 2007;15:40.CrossRefGoogle Scholar
  32. 32.
    Lippacher S, Dejour D, Elsharkawi M, et al. Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med. 2012;40:837–43.CrossRefGoogle Scholar
  33. 33.
    Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.CrossRefGoogle Scholar
  34. 34.
    Brady JM, Sullivan JP, Nguyen J, et al. The tibial tubercle-to-trochlear groove distance is reliable in the setting of trochlear dysplasia, and superior to the tibial tubercle-to-posterior cruciate ligament distance when evaluating coronal malalignment in patellofemoral instability. Arthroscopy. 2017;33:2026–34.PubMedGoogle Scholar
  35. 35.
    Wittstein JR, O’Brien SD, Vinson EN, Garrett WE Jr. MRI evaluation of anterior knee pain: predicting response to nonoperative treatment. Skelet Radiol. 2009;38:895–901.CrossRefGoogle Scholar
  36. 36.
    Pandit S, Frampton C, Stoddart J, Lynskey T. Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop. 2011;35:1799–803.CrossRefGoogle Scholar
  37. 37.
    Skelley N, Friedman M, McGinnis M, Smith C, Hillen T, Matava M. Inter- and intraobserver reliability in the MRI measurement of the tibial tubercle–trochlear groove distance and trochlea dysplasia. Am J Sports Med. 2015;43:873–8.CrossRefGoogle Scholar
  38. 38.
    Camp CL, Stuart MJ, Krych AJ, et al. CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med. 2013;41:1835–40.CrossRefGoogle Scholar
  39. 39.
    Schottle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance: a comparative study between CT and MRI scanning. Knee. 2006;13:26–31.CrossRefGoogle Scholar
  40. 40.
    Brady JM, Rosencrans AS, Shubin Stein BE. Use of TT-PCL versus TT-TG. Curr Rev Musculoskelet Med. 2018;11:261–5.CrossRefGoogle Scholar
  41. 41.
    Marquez-Lara A, Andersen J, Lenchik L, Ferguson CM, Gupta P. Variability in patellofemoral alignment measurements on MRI: influence of knee position. AJR Am J Roentgenol. 2017;208:1097–102.CrossRefGoogle Scholar
  42. 42.
    Albrecht S, Biedert RM. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc. 2006;14:707–12.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carlos A. Encinas-Ullán
    • 1
  • E. Carlos Rodríguez-Merchán
    • 1
  1. 1.Department of Orthopedic Surgery“La Paz” University Hospital-IdiPazMadridSpain

Personalised recommendations