Advertisement

Acoustic Event Detection with Sequential Attention and Soft Boundary Information

  • Jingjing PanEmail author
  • Xianjun Xia
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 69)

Abstract

Acoustic event detection is to perceive the surrounding auditory sound and popularly performed by the multi-label classification based approaches. The concatenated acoustic features of consecutive frames and the hard boundary labels are adopted as the input and output respectively. However, the different input frames are treated equally and the hard boundary based outputs are error-prone. To deal with these, this paper proposes to utilize the sequential attention together with the soft boundary information. Experimental results on the latest TUT Sound Event database demonstrate the superior performance of the proposed technique.

Keywords

Acoustic event detection Multi-label classification Sequential attention Soft boundary 

References

  1. 1.
    Schröder., J, Goetze., S., Grutzmacher., V, Anemüller, J.: Automatic acoustic siren detection in traffic noise by part-based models. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 493–497. IEEE (2013)Google Scholar
  2. 2.
    McCowan, L., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., Zhang, D.: Automatic analysis of multimodal group actions in meetings. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 305–317 (2005)CrossRefGoogle Scholar
  3. 3.
    Temko, A., Nadeu, C.: Acoustic event detection in meeting-room environments. Pattern Recognit. Lett. 30(14), 1281–1288 (2009)CrossRefGoogle Scholar
  4. 4.
    Zhuang, X., Xi, Z., Mark, A., Thomas, S.: Real-world acoustic event detection. Pattern Recognit. Lett. 31(12), 1543–1551 (2010)CrossRefGoogle Scholar
  5. 5.
    Grzeszick, R., Plinge, A., Fink, G.A.: Bag-of-features methods for acoustic event detection and classification. IEEE/ACM Trans. Audio Speech Lang. Process. 25(6), 1242–1252 (2017)CrossRefGoogle Scholar
  6. 6.
    Phan, H., Maaß, M., Mazur, R., Mertins, A.: Random regression forests for acoustic event detection and classification. IEEE/ACM Trans. Audio Speech Lang. Process. 23(1), 20–31 (2015)CrossRefGoogle Scholar
  7. 7.
    Parascandolo, G., Heittola, T., Huttunen, H., Virtanen, T.: Convolutional recurrent neural networks for polyphonic sound event detection. IEEE/ACM Trans. Audio Speech Lang. Process. 25(6), 1291–1303 (2017)CrossRefGoogle Scholar
  8. 8.
    Xia, X., Togneri, R., Sohel, F., Huang, D.: Random forest classification based acoustic event detection utilizing contextual-information and bottleneck features. Pattern Recognit. 81, 1–13 (2018)CrossRefGoogle Scholar
  9. 9.
    Xia, X., Togneri, R., Sohel., F., Huang, D.: Random forest regression based acoustic event detection with bottleneck features. In: International Conference on Multimedia and Expo (ICME), pp. 157–162. IEEE (2017)Google Scholar
  10. 10.
    Xia, X., Togneri, R., Sohel, F., Huang, D.: Random forest classification based acoustic event detection. In: International Conference on Multimedia and Expo (ICME), pp. 163–168. IEEE (2017)Google Scholar
  11. 11.
    Temko, A., Malkin, R., Zieger, C., Macho, D., Nadeu, C., Omologo, M.: Clear evaluation of acoustic event detection and classification systems. In: International Evaluation Workshop on Classification of Events, Activities and Relationships, pp. 311–322. Springer (2006)Google Scholar
  12. 12.
    Virtanen, T., Mesaros, A., Heittola, T., Plumbley, M.D., Foster, P., Benetos, E., Lagrange, M., Cakirand, E.: Proceedings of the detection and classification of acoustic scenes and events 2016 workshop (2016)Google Scholar
  13. 13.
    Adavanne, S., Virtanen, T.: A report on sound event detection with different binaural features. DCASE Challenge, Technical report, September 2017Google Scholar
  14. 14.
    Niessen, M.E., Kasteren, T., Merentitis, A.: Hierarchical modeling using automated sub-clustering for sound event recognition. In: Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 1–4. IEEE (2013)Google Scholar
  15. 15.
    Parascandolo, G., Huttunen, H., Virtanen, T.: Recurrent neural networks for polyphonic sound event detection in real life recordings. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6440–6444. IEEE (2016)Google Scholar
  16. 16.
    Xia, X., Togneri, R., Sohel, F., Huang, D.: Class wise distance based acoustic event detection. DCASE2017 Challenge, Technical report, September 2017Google Scholar
  17. 17.
    Cakir, E., Heittola, T., Huttunen, H., Virtanen, T.: Polyphonic sound event detection using multi label deep neural networks. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2015)Google Scholar
  18. 18.
    Xia, X., Togneri, R., Sohel, F., Huang, D.: Frame wise dynamic threshold based polyphonic acoustic event detection. In: Proceedings Interspeech, pp. 474–478 (2017)Google Scholar
  19. 19.
    Lu, R., Duan, Z.: Bidirectional GRU for sound event detection. DCASE 2017 Challenge, Technical report, September 2017Google Scholar
  20. 20.
    Adavanne, S., Virtanen, T.: A report on sound event detection with different binaural features. DCASE 2017 Challenge, Technical report, September 2017Google Scholar
  21. 21.
    Xia, X., Togneri, R., Sohel, F., Huang, D.: Confidence based acoustic event detection. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 306–310. IEEE (2018)Google Scholar
  22. 22.
    Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Bengio, Y.: End-to-end attention-based large vocabulary speech recognition. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949. IEEE (2016)Google Scholar
  23. 23.
    Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)Google Scholar
  24. 24.
    Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp. 3104–3112 (2014)Google Scholar
  25. 25.
    Mesaros, A., Heittola, T., Virtanen, T.: TUT database for acoustic scene classification and sound event detection. In: 24th European on Signal Processing Conference (EUSIPCO), pp. 1128–1132. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.China University of Mining and TechnologyXuzhouChina
  2. 2.The University of Western AustraliaPerthAustralia

Personalised recommendations