Advertisement

Conceptual Model for the New Generation of Data Warehouse System Catalog

  • Danijela JaksicEmail author
  • Patrizia Poscic
  • Vladan Jovanovic
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 69)

Abstract

This paper introduces a formal definition of a Data Vault model and a conceptual data model of a new Data Warehouse (DW) system catalog (Metadata Vault Repository - MDV) which is based on the Data Vault (DV) method for database modeling. The goal of this conceptual MDV model is to serve as a basis for future development of a new generation of DW temporal system catalogs – catalogs that will track and manage changes in the DW data and metadata, as well as in its’ schemas. The main contributions of this paper are: (a) a formal definition of DV model and its main concepts, (b) a conceptual MDV model, (c) a final set of fundamental changes over the DW schema, and (d) a formal algebra for DW schema maintenance.

Keywords

Data warehouse Data vault Schema evolution Conceptual model System catalog 

Notes

Acknowledgements

This paper is based upon work supported by the University of Rijeka under project no. 13.13.2.2.06, titled “Metode i modeli za dizajn i evoluciju skladišta podataka”.

References

  1. 1.
    Andany, J., Leonard, M., Palisser, C.: Management of schema evolution in databases. In: Proceedings of the 17th International Conference on Very Large Databases, Barcelona (1991)Google Scholar
  2. 2.
    Banerjee, S., Davis, K.C.: Modeling data warehouse schema evolution over extended hierarchy semantics. In: Journal on Data Semantics XIII. LNCS, vol. 5530, pp. 72–96. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Bebel, B., Krolinkowski, Z., Wrembel, R.: Formal approach to modeling a multiversion data warehouse. In: Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 54, no. 1 (2006)Google Scholar
  4. 4.
    Bellahsene, Z.: Schema evolution in data warehouses. Knowl. Inf. Syst. 4(3), 283–304 (2002)CrossRefGoogle Scholar
  5. 5.
    Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: Proceedings of the 16th International Conference on Data Engineering (ICDE 2000), San Diego, California (2000)Google Scholar
  6. 6.
    Date, C.J., Darwen, H., Lorentzos, N.: Temporal Data & the Relational Model. Morgan Kaufmann Publishers, Burlington (2002)Google Scholar
  7. 7.
    Eder, J., Koncilla, C.: Evolution of dimension data in temporal data warehouses. Technical report (2000)Google Scholar
  8. 8.
    ErWin Data Modeler. http://erwin.com/products/data-modeler. Accessed 17 Nov 2017
  9. 9.
    Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data warehouses. In: ER Workshops 2004. LNCS, vol. 3289, pp. 415–428. Springer, Heidelberg (2004)Google Scholar
  10. 10.
  11. 11.
    Inmon, W.H., Strauss, D., Neushloss, G.: DW 2.0: The Architecture for the Next Generation of Data Warehousing. Morgan Kaufmann Publishers, Burlington (2008)Google Scholar
  12. 12.
    Inmon, W.H., Linstedt, D.: Data Architecture: A Primer for the Data Scientist: Big Data, Data Warehouse and Data Vault. Morgan Kaufmann, Burlington (2014)Google Scholar
  13. 13.
    Jovanović, V., Bojičić, I.: Conceptual data vault model. In: Proceedings of the Southern Association for Information Systems Conference, Atlanta, USA (2012)Google Scholar
  14. 14.
    Jovanović, V., Bojičić, I., Knowles, C., Pavlic, M.: Persistent staging area models for data warehouses. In: Issues in Information Systems, vol. 13, no. 1, pp. 121–132 (2012)Google Scholar
  15. 15.
    Linstedt, D.: SuperCharge Your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault. CreateSpace Independent Publishing Platform, USA (2011)Google Scholar
  16. 16.
    Linstedt, D., Olschimke, M.: Building a Scalable Data Warehouse with Data Vault 2.0: Implementation Guide for Microsoft SQL Server 2014. Morgan Kaufmann, Burlington (2015)Google Scholar
  17. 17.
    Malinowski, E., Zimányi, E.: A conceptual model for temporal data warehouses and its transformation to the ER and the object-relational models. Data Knowl. Eng. 64, 101–133 (2008)CrossRefGoogle Scholar
  18. 18.
    Quix, C.: Repository support for data warehouse evolution. In: Proceedings of the International Workshop DMDW, Heidelberg, Germany (2004)Google Scholar
  19. 19.
    Rundensteiner, E.A., Koeller, A., Zhang, X.: Maintaining data warehouses over changing information sources. Commun. ACM 43, 57–62 (2000)CrossRefGoogle Scholar
  20. 20.
    Subotić, D., Jovanovic, V., Poščić, P.: Data warehouse schema evolution: state of the art. In: 25th Central European Conference on Information and Intelligent Systems CECIIS, Varaždin, Croatia (2014)Google Scholar
  21. 21.
    Yessad, L., Labiod, A.: Comparative study of data warehouses modeling approaches: Inmon, Kimball and Data Vault. In: International Conference on System Reliability and Science (ICSRS), pp. 95–99 (2016)Google Scholar
  22. 22.
    Bojicic, I., Marjanovic, Z., Turajlic, N., Petrovic, M., Vuckovic, M., Jovanovic, V.: Domain/mapping model: a novel data warehouse data model. Int. J. Comput. Commun. Control 12(2), 166–182 (2017)CrossRefGoogle Scholar
  23. 23.
    Rocha, L., Vale, F., Cirilo, E., Barbosa, D., Mourão, F.: A framework for migrating relational datasets to NoSQL. Procedia Comput. Sci. 51(1), 2593–2602 (2015)CrossRefGoogle Scholar
  24. 24.
    Hanine, M., Bendarag, A., Boutkhoum, O.: Data-migration-methodology-from-relational-to-NoSQL-databases. Int. J. Comput. Electr. Autom. Control Inf. Eng. 9, 2369–2373 (2015)Google Scholar
  25. 25.
    Jakšić, D., Jovanović, V., Poščić, P.: Integrating evolving MDM and EDW systems by data vault based system catalog. In: Proceedings of the 40th Jubilee International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO, Opatija, pp. 1633–1638 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Danijela Jaksic
    • 1
    Email author
  • Patrizia Poscic
    • 1
  • Vladan Jovanovic
    • 2
  1. 1.Department of InformaticsUniversity of RijekaRijekaCroatia
  2. 2.Department of Computer ScienceGeorgia Southern UniversityStatesboroUSA

Personalised recommendations