Advertisement

Educational Database Analysis Using Simple Bayesian Classifier

  • Byron Oviedo
  • Cristian Zambrano-VegaEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 69)

Abstract

In this article, we propose the use of a new simple Bayesian classifier (SBND) that quickly learns a Markov boundary of the class variable to a network structure relating class variables and the said boundary. This model is compared to other Bayesian classifiers. Then experimental tests are carried out using a UCI database referring to the performance of high school students who take the Mathematics course in two schools in Portugal based on their personal details the tests try to anticipate who passes the course and who requires help to succeed. With these databases we compare the results obtained by such algorithms studied in the state of the art such as Naive Bayes, TAN, BAN, RPDag, CRPDag, SBND and combinations with different metrics such as K2, BIC, Akaike, BDEu. The experimental work was done in Weka software.

Keywords

Bayesian networks educational analysis Bayesian classifier educational analysis 

References

  1. 1.
    Acid, S., De Campos, L., Castellano, J.: Learning Bayesian network classifiers: searching in a space of partially directed acyclic graphs. Mach. Learn. 59(3), 213–235 (2005)CrossRefGoogle Scholar
  2. 2.
    Cortez, P., Goncálves, S.: Using data mining to predict secondary school student performance. University of Minho, pp. 5–12. EUROSIS (2008)Google Scholar
  3. 3.
    Dekker, G., Pechenizkiy, M., Vleeshouwers, J.: Predicting students drop out: a case study. In: Educational Data Mining 2009 (2009)Google Scholar
  4. 4.
    Felgaer, P.: Optimización de redes bayesianas basado en técnicas de aprendizaje por inducción. Reportes Técnicos en Ingeniería del Softw. 6(2), 64–69 (2004)Google Scholar
  5. 5.
    García, F.: Modelos Bayesianos para la clasificación supervisada: aplicaciones al análisis de datos de expresión genética. Tesis Doctoral, Universidad de Granada (2009)Google Scholar
  6. 6.
    García-Martínez, R., Borrajo, D.: An integrated approach of learning, planning, and execution. J. Intell. Robot. Syst. 29(1), 47–78 (2000)CrossRefGoogle Scholar
  7. 7.
    Morales, M., Salmerón, A.: Análisis del alumnado de la universidad de Almería mediante redes bayesianas. In: 27 Congreso Nacional de Estadística e Investigación Operativa, pp. 3413–3436, Abril 2003Google Scholar
  8. 8.
    Oviedo Bayas, B.W.: Modelos gráficos probabilisticos aplicados a la predicción del rendimiento en educación (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Engineering SciencesQuevedo State Technical UniversityQuevedoEcuador

Personalised recommendations