Advertisement

Accurate, Timely, Reliable: A High Standard and Elusive Goal for Traveler Information Data Quality

  • Douglas GalarusEmail author
  • Ian Turnbull
  • Sean Campbell
  • Jeremiah Pearce
  • Leann Koon
  • Rafal Angryk
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 69)

Abstract

In this paper, we demonstrate the difficulty of conducting spatio-temporal data quality control for sensor data. Our motivation is the provision of quality traveler information by departments of transportation. We show that assessment of accuracy of air temperature requires robust methods that go beyond the identification of outliers and inliers to mitigate the impact of bad data and bad metadata. We give a representative approach and demonstrate the challenges of assessment, particularly in the presence of incorrect data quality labels and the absence of ground truth for this air temperature data. Our approach is model-based and can be used to estimate not only outliers versus inliers, but also degree of outlyingness. It can not only be used to identify bad data in general as well as bad metadata. We evaluate our approach against other methods that use interpolation to model the data. We use an Area Under the ROC (AUROC) analysis to compare methods when data quality labels are provided. We use mean-squared-error and t-tests to compare methods both when labels are provided and when not. We measure scalability using computation time.

Keywords

Sensor data Data quality Spatial-temporal data Quality control Outlier Inlier Bad data Ground truth 

References

  1. 1.
    Barnes, S.L.: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteorol. 3(4), 396–409 (1964)CrossRefGoogle Scholar
  2. 2.
    Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: 23rd ACM National Conference, pp. 517–524 (1968)Google Scholar
  3. 3.
    Shafer, M.A., Fiebrich, C.A., Arndt, D.S., Fredrickson, S.E., Hughes, T.W.: Quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Ocean. Technol. 17(4), 474–494 (2000)CrossRefGoogle Scholar
  4. 4.
    Limber, M., Drobot, S., Fowler, T.: Clarus Quality Checking Algorithm Documentation Report (2010)Google Scholar
  5. 5.
    University of Utah: MesoWest Data. http://mesowest.utah.edu/. Accessed 26 Dec 2015
  6. 6.
    Splitt, M.E., Horel, J.D.: Use of Multivariate Linear Regression for Meteorological Data Analysis and Quality Assessment in Complex Terrain. http://mesowest.utah.edu/html/help/regress.html. Accessed 26 Dec 2015
  7. 7.
    University of Utah: MesoWest Quality Control Flags Help Page. http://mesowest.utah.edu/html/help/key.html. Accessed 26 Dec 2015
  8. 8.
    NOAA: Meteorological Assimilation Data Ingest System (MADIS). http://madis.noaa.gov/. Accessed 26 Dec 2015
  9. 9.
    NOAA: MADIS Meteorological Surface Quality Control. https://madis.ncep.noaa.gov/madis_sfc_qc.shtml. Accessed 26 Dec 2015
  10. 10.
    NOAA: MADIS Quality Control. http://madis.noaa.gov/madis_qc.html. Accessed 26 Dec 2015
  11. 11.
    Belousov, S.L., Gandin, L.S., Mashkovich, S.A.: Computer Processing of Current Meteorological Data. Translated from Russian to English by Atmospheric Environment Service. Nurklik, Meteorol. Transl., no. 18, p. 227 (1972_Google Scholar
  12. 12.
    Zimmerman, D., Pavlik, C., Ruggles, A., Armstrong, M.P.: An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math. Geol. 31(4), 375–390 (1999)CrossRefGoogle Scholar
  13. 13.
    Lu, G.Y., Wong, D.W.: An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 34(9), 1044–1055 (2008)CrossRefGoogle Scholar
  14. 14.
    Mueller, T.G., Pusuluri, N.B., Mathias, K.K., Cornelius, P.L., Barnhisel, R.I., Shearer, S.A.: Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci. Soc. Am. J. 68(6), 2042 (2004)CrossRefGoogle Scholar
  15. 15.
    Galarus, D.E., Angryk, R.A., Sheppard, J.W.: Automated weather sensor quality control. In: FLAIRS Conference, pp. 388–393 (2012)Google Scholar
  16. 16.
    Galarus, D.E., Angryk, R.A.: Mining robust neighborhoods for quality control of sensor data. In: Proceedings of 4th ACM SIGSPATIAL International Workshop GeoStreaming (IWGS 2013), pp. 86–95, November 2013Google Scholar
  17. 17.
    Galarus, D.E., Angryk, R.A.: A SMART approach to quality assessment of site-based spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS 2016) (2016)Google Scholar
  18. 18.
    Galarus, D.E., Angryk, R.A.: The SMART approach to comprehensive quality assessment of site-based spatial-temporal data. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 2636–2645 (2016)Google Scholar
  19. 19.
    Galarus, D.E., Angryk, R.A.: Beyond accuracy - a SMART approach to site-based spatio-temporal data quality assessment. Intell. Data Anal. 22(1), 21–43 (2018)CrossRefGoogle Scholar
  20. 20.
    Galarus, D.E., Angryk, R.A.: Quality control from the perspective of the real-time spatial-temporal data aggregator and (re)distributor. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2014), pp. 389–392 (2014)Google Scholar
  21. 21.
    Galarus, D.E., Angryk, R.A.: Spatio-temporal quality control: implications and applications for data consumers and aggregators. Open Geospatial Data Softw. Stand. 1(1), 1 (2016)CrossRefGoogle Scholar
  22. 22.
    Xie, H., McDonnell, K.T., Qin, H.: Surface reconstruction of noisy and defective data sets. In: Proceedings of the Conference on Visualization 2004, pp. 259–266 (2004)Google Scholar
  23. 23.
    Li, L., Zhou, X., Kalo, M., Piltner, R.: Spatiotemporal interpolation methods for the application of estimating population exposure to fine particulate matter in the contiguous US and a Real-Time web application. Int. J. Environ. Res. Public Health 13(8), 749 (2016)CrossRefGoogle Scholar
  24. 24.
    Grieser, J.: Interpolation of global monthly rain gauge observations for climate change analysis. J. Appl. Meteorol. Climatol. 54(7), 1449–1464 (2015)CrossRefGoogle Scholar
  25. 25.
    Cressie, N.: The origins of kriging. Math. Geol. 22(3), 239–252 (1990)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wackernagel, H.: Multivariate Geostatistics: An Introduction with Applications. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  27. 27.
    Handcock, M.S., Stein, M.L.: A Bayesian analysis of kriging. Technometrics 35(4), 403–410 (1993)CrossRefGoogle Scholar
  28. 28.
    Hunter, G.J., Bregt, A.K., Heuvelink, G.B.M., De Bruin, S., Virrantaus, K.: Spatial data quality: problems and prospects. In: Research Trends in Geographic Information Science, pp. 101–121. Springer (2009)Google Scholar
  29. 29.
    Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)zbMATHGoogle Scholar
  30. 30.
    Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education, Inc., London (2006)Google Scholar
  31. 31.
    Aggarwal, C.C.: Outlier Analysis. Springer Publishing Company Incorporated, Heidelberg (2013)CrossRefGoogle Scholar
  32. 32.
    Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, Oxford (1989)Google Scholar
  33. 33.
    Huijbregts, C., Matheron, G.: Universal kriging (an optimal method for estimating and contouring in trend surface analysis). In: Proceedings of Ninth International Symposium on Techniques for Decision-Making in the Mineral Industry (1971)Google Scholar
  34. 34.
    Galassi, M., et al.: GNU Scientific Library Reference Manual, 3rd edn. Free Software FoundationGoogle Scholar
  35. 35.
    Bohling, G.: Introduction to Geostatistics and Variogram Analysis. http://people.ku.edu/~gbohling/cpe940/Variograms.pdf
  36. 36.
    Rousseeuw, P.J., Van Driessen, K.: Computing LTS regression for large data sets. Data Min. Knowl. Discov. 12(1), 29–45 (2006)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Voss, R.F.: Random fractal forgeries. In: Fundamental Algorithms for Computer Graphics, pp. 805–835. Springer (1985)Google Scholar
  38. 38.
    Feder, J.: Fractals. Springer Science & Business Media, Heidelberg (2013)zbMATHGoogle Scholar
  39. 39.
    Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H.-O., Saupe, D., Voss, R.F., Fisher, Y., McGuire, M.: The Science of Fractal Images. Springer Publishing Company Incorporated, Heidelberg (2011)Google Scholar
  40. 40.
    Goodchild, M.F., Gopal, S.: The Accuracy of Spatial Databases. CRC Press, Boca Raton (1989)Google Scholar
  41. 41.
    Bailey, T.C., Gatrell, A.C.: Interactive Spatial Data Analysis, vol. 413. Longman Scientific & Technical Essex (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Douglas Galarus
    • 1
    Email author
  • Ian Turnbull
    • 2
  • Sean Campbell
    • 3
  • Jeremiah Pearce
    • 2
  • Leann Koon
    • 4
  • Rafal Angryk
    • 5
  1. 1.Computer Science DepartmentUtah State UniversityLoganUSA
  2. 2.California Department of TransportationReddingUSA
  3. 3.Caltrans Division of Research, Innovation and Systems InformationCalifornia Department of TransportationSacramentoUSA
  4. 4.Western Transportation InstituteMontana State UniversityBozemanUSA
  5. 5.Department of Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations