5G Waveform Competition: Performance Comparison and Analysis of OFDM and FBMC in Slow Fading and Fast Fading Channels

  • Muhammad ImranEmail author
  • Aamina Hassan
  • Adnan Ahmed Khan
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 69)


An analysis of an emerging physical layer multicarrier (MC), waveform Filter Bank Multi Carrier (FBMC) with Orthogonal frequency division Multiplexing (OFDM) waveform under variety of channels has been performed. Filter banks are the advanced form of MC sub band processing and promise to deliver better results than OFDM. These filter banks exploit the shortcomings arising due to the usage of Fast Fourier transforms (FFT) at the trade-off of adding complexity to the systems i.e. Poly-Phase Filter Networks (PPN). We investigate transceivers design, out of band Emission (OOB), Power Spectral Density (PSD), Bit Error Probability (BEP) for these waveform. We validate our analyses through simulations ascertaining FBMC’s performance better than OFDM which makes it an ideal candidate for 5G physical layer.


OFDM FBMC 5G Poly-Phase Filter 



This research paper is an outcome of Masters research work of Aamina Hassan. Authors are grateful to National University of Sciences & Technology (NUST), Islamabad, Pakistan, for the motivation, encouragement and support throughout the research process.


  1. 1.
    Wu, Y., Zou, W.Y.: Orthogonal frequency division multiplexing: a multi-carrier modulation scheme. IEEE Trans. Consum. Electron. 41, 392–399 (1995)CrossRefGoogle Scholar
  2. 2.
    Koffman, I., Roman, V.: Broadband wireless access solutions based on OFDM access in IEEE 802.16. IEEE Commun. Mag. 40, 96–103 (2002)CrossRefGoogle Scholar
  3. 3.
    Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014)CrossRefGoogle Scholar
  4. 4.
    Amstrong, J.: OFDM for optical communications. J. Lightwave Technol. 27(3), 189–204 (2009)CrossRefGoogle Scholar
  5. 5.
    Mahmud, Z., Hossain, M.S., Islam, M.N., Abdullah, M.I.: Comparative study of PAPR reduction techniques in OFDM. ARPN J. Syst. Softw. 1 (2011)Google Scholar
  6. 6.
    Bisht, M., Joshi, A.: Various techniques to reduce PAPR in OFDM systems: a survey. Int. J. Signal Process. Image Process. Pattern Recogn. 8, 195–206 (2015)Google Scholar
  7. 7.
    Saltzberg, B.: Performance of an efficient parallel data transmission system. IEEE Trans. Commun. Technol. 15, 805–811 (1967)CrossRefGoogle Scholar
  8. 8.
    Farhang-Boroujeny, B.: Filter Bank Multicarrier Modulation: A Waveform Candidate for 5G and Beyond. ECE Department, University of Utah, Salt Lake City, UT 84112, USA (2014)CrossRefGoogle Scholar
  9. 9.
    Farhang-Boroujeny, B.: Filter Bank Multicarrier (FBMC): An Integrated Solution to Spectrum Sensing and Data Transmission in Cognitive Radio Networks, USA (2009)Google Scholar
  10. 10.
    Michailow, N., Matthé, M., Gaspar, I.S., Caldevilla, A.N., Mendes, L.L., Festag, A., Fettweis, G.: Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans. Commun. 62, 3045–3061 (2014). IEEE Communications SocietyCrossRefGoogle Scholar
  11. 11.
    Gerzaguet, R., et al.: The 5G candidate waveform race: a comparison of complexity and performance. EURASIP J. Wirel. Commun. Netw. 13 (2017)Google Scholar
  12. 12.
    Schaich, F., Wild, T.: Waveform contenders for 5G—OFDM vs. FBMC vs. UFMC. In: 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), Conference (2014)Google Scholar
  13. 13.
    Bellanger, M., et al.: FBMC Physical Layer: A Primer. (2010)
  14. 14.
    Karjaluoto, H.: An Investigation of Third Generation (3G) Mobile Technologies and Services. University of Jyväskylä, October 2006Google Scholar
  15. 15.
    Reddy, M.H., Jaswanth, S., Pramod, N.V.: Evolution of mobile networks: from 1G TO 4G. Adv. Res. Electr. Electron. Eng. 3(4), 307–310 (2016)Google Scholar
  16. 16.
    Shah, D.C., Rindhe, B.U., Narayankhedkar, S.K.: Effects of cyclic prefix on OFDM system. In: Proceedings of the ICWET 2010 International Conference & Workshop on Emerging Trends in Technology, India, January 2010Google Scholar
  17. 17.
    Pandharipande, A.: Principles of OFDM. IEEE Potentials 21, 16–19 (2002)CrossRefGoogle Scholar
  18. 18.
    Sadouki, B.R., Chaker, H., Djebbouri, M.: The effect of multipath on the OFDM system. Int. J. Comput. Appl. 89(13) (2014). ISSN 0975-8887Google Scholar
  19. 19.
    Gangwar, A., Bhardwaj, M.: An overview: peak to average power ratio in OFDM system & its effect. Int. J. Commun. Comput. Technol. 1, 22–25 (2012)Google Scholar
  20. 20.
    Baltar, L.G., Waldhauser, D.S., Nossek, J.A.: Out-of-band radiation in multicarrier system: a comparison, Germany (2009)Google Scholar
  21. 21.
    Sahin, A., Guvenc, I., Arslan, H.: A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects. IEEE Commun. Surv. Tutor. 16(3), 1312–1338 (2014)CrossRefGoogle Scholar
  22. 22.
    Nissel, R., Rupp, M.: OFDM and FBMC-OQAM in doubly-selective channels: calculating the bit error probability. IEEE Commun. Lett. 21, 1297–1300 (2017)CrossRefGoogle Scholar
  23. 23.
    He, Q., Schmeink, A.: Comparison and evaluation between FBMC and OFDM systems. In: 19th International ITG Workshop on Smart Antennas, WSA 2015, 3–5 March 2015Google Scholar
  24. 24.
    Draft 802.20 Permanent Document: Channel Models for IEEE 802.20 MBWA System Simulations. IEEE (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Muhammad Imran
    • 1
    Email author
  • Aamina Hassan
    • 1
  • Adnan Ahmed Khan
    • 1
  1. 1.College of SignalsNational University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations