System of Organizational Terms as a Methodological Concept in Replacing Human Managers with Robots

  • Olaf FlakEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 70)


Although IT systems fill and automate more and more areas of human life, and thus, manager’s work, one can ask why, at the end of the second decade of the 21st century, one cannot hire a robot as a manager? The paper presents the reasons for such a gap in applying algorithms and robots to business life and the possible solution to this problem. The reasons are the methodological problems in management sciences such as H. Koonst’s “theory jungle”, large subjectivity in theories, “overproduction of the truth”, chaos in definitions and scientific language, building “islands of knowledge” instead of developing a stable model of reality. The solution for these obstacles in building real knowledge on manager’s behavior, which is the necessary foundation of work automation, is the system of organizational terms. This is a methodological concept of research introduced by the author together with original research tools which are on-line management tools at Both innovations in management research let conduct several research project on manager’s behavior. There were also attempts of recognizing patterns in manager’s behavior. The examples of results are presented in the paper.


System of organizational terms On-line management tools Manager’s behavior Work automation Team management automation 



Research activities leading to this work have been supported by the Faculty of Radio and Television at the University of Silesia in Katowice (Poland) and FoKoS at the University of Siegen (Germany). Olaf Flak greatly thanks to Prof. Marcin Grzegorzek from University of Siegen for his significant help in the experiments.


  1. 1.
    Ewenstein, B., Hancock, B., Komm, A.: Ahead of the curve: the future of performance management. McKinsey Q. (May 2016).
  2. 2.
    Fidler, D.: Here’s how managers can be replaced by software. Harv. Bus. Rev. (April 2015).
  3. 3.
    Drucker, P.F.: the manager and the moron. McKinsey Q. (Dec 1967).
  4. 4.
    Klein, G., Feltovich, P.J., Bradshaw, J.M., Woods, D.D.: Common ground and coordination in joint activity. In: Rouse, W.R., Boff, K.B. (eds.) Organizational Simulation. Wiley, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Christoffersen, K., Woods, D.D.: How to make automated systems team players. Adv. Hum. Perform. Cogn. Eng. Res. 2, 1–12 (2002)CrossRefGoogle Scholar
  6. 6.
    Clark, H.H., Brennan, S.E.: Grounding in communication. In: Resnick, L.B., Levine, J.M., Teasley, S.D. (eds.) Perspectives on Socially Shared Cognition. American Psychological Association, Washington (1991)Google Scholar
  7. 7.
    Scherbaum, C.A., Meade, A.W.: Measurement in the organizational sciences. In: Buchanan, D., Bryman, A. (eds.) Handbook of Organizational Research Methods, pp. 636–653. Sage, London (2009)Google Scholar
  8. 8.
    Goebel, E., Mills, I.M., Wallard, A.J.: The International System of Units (SI), 8th edn. Organisation Intergouvernementale de la Convention du Mètre, Paris (2006)Google Scholar
  9. 9.
    Koontz, H.: The Management Theory Jungle. The Journal of the Academy of Management 4(3), 174–188 (1961)Google Scholar
  10. 10.
    Witczak, H.: Wstęp do systemu nauk o zarządzaniu. Contemp. Manag. Q. 2, 27–40 (2013)Google Scholar
  11. 11.
    Sobczyk, J.R.: Kryzys podstaw metodologicznych nauk o zarządzaniu—kryzysem powinowactwa z naukami społecznymi. Acta Univ. Lodz. Folia Oecon. 234, 335–345 (2010)Google Scholar
  12. 12.
    Sułkowski, Ł.: Cognitive challenges of epistemology in management sciences. Entrep. Manag. t. 14, z. 5, cz. 1, pp. 271–282 (2013)Google Scholar
  13. 13.
    Niemczyk, J.: The development of management science from perspective of paradigms of economic sciences. Organiz. Manag. Nr 1A, 167–175 (2014)Google Scholar
  14. 14.
    Douglass, B.: Economic methodology and nobel laureates: confirmation of a methodological paradigm shift. Am. J. Econ. Sociol. 71(5), 1205–1218 (2012)CrossRefGoogle Scholar
  15. 15.
    Callaghan, C.: Contemporary insights from social sciences theory: implications for management. S. Afr. J. Bus. Manag. 48(4), 35–45 (Dec 2017)CrossRefGoogle Scholar
  16. 16.
    Guercini, S.: New qualitative research methodologies in management. Manag. Decis. 52(5), 662–674 (2014)CrossRefGoogle Scholar
  17. 17.
    Hicks, H.G., Goronzy, F.: On methodology in the study of management and organization. Acad. Manag. J. 10(4), 371–384 (Dec 1967)Google Scholar
  18. 18.
    Sudoł, S.: Main dilemmas of management science. Organiz. Manag. 1(139), 7–22 (2010)Google Scholar
  19. 19.
    Sułkowski, Ł.: About utopias in Management. Contemp. Manag. Q. 3, 23–33 (2011)Google Scholar
  20. 20.
    Darmer, P.: The subject(ivity) of management. J. Organiz. Change Manag. 13(4), 334–351 (2000)CrossRefGoogle Scholar
  21. 21.
    Hodge, R.: Towards a postmodern science of language. Soc. Semiot. 13(3), 241–262 (2010)CrossRefGoogle Scholar
  22. 22.
    Edmondson, A.C., Mcmanus, S.E.: Methodological fit in management field research. Acad. Manag. Rev. 32(4), 1158–1159 (2007)CrossRefGoogle Scholar
  23. 23.
    Sułkowski, Ł.: Problem niewspółmierności koncepcji w zarządzaniu. Prz. Organiz., Nr 4, s. 6–8 (2004)Google Scholar
  24. 24.
    Gleiser, M.: The Island of Knowledge: The Limits of Science and the Search for Meaning. Basic Books, New York (2014)Google Scholar
  25. 25.
    Fayol, H.: Administration industrielle et generate. Dunod, Paris (1916)Google Scholar
  26. 26.
    Koontz, H., O’Donneil, C.: Principles of Management. McGraw-Hill, New York (1964)Google Scholar
  27. 27.
    Katz, R.L.: Skills of an effective administrator. Harv. Bus. Rev. 52(5), 90–102 (1974)Google Scholar
  28. 28.
    Kaiser, R.B., Craig, S.B., Overfield, D.V., Yarborough, P.: Differences in managerial jobs at the bottom, middle, and top: a review of empirical research. Psychol. Manag. J. 14(2), 76–91 (2011)Google Scholar
  29. 29.
    Ullah, F., Burhan, M., Shabbir, N.: Role of case studies in development of managerial skills: evidence from Khyber Pakhtunkhwa Business Schools. J. Manag. Sci. 8(2), 192–207 (2011)Google Scholar
  30. 30.
    Mintzberg, H.: The Nature of Managerial Work. Prentice-Hall, New York (1980)Google Scholar
  31. 31.
    Pavett, C.M., Lau, A.W.: Managerial roles, skills, and effective performance. In: Academy of Management Proceedings, pp. 95–99 (1982)Google Scholar
  32. 32.
    McCan, D., Margerison, Ch.: Managing high-performance teams. Train. Dev. J. 10, 53–60 (1989)Google Scholar
  33. 33.
    Sinar, E., Paese, M.: The new leader profile. Train. Mag. 46, 46–50 (2016)Google Scholar
  34. 34.
    Pavett, C.M., Lau, A.W.: Managerial work: the influence of hierarchical level and functional specialty. Acad. Manag. J. 26(1), 170–177 (1983)Google Scholar
  35. 35.
    Flak, O., Yang, C., Grzegorzek, M.: Action sequence matching of team managers. In: Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods ICPRAM, pp. 24–26 (2017)Google Scholar
  36. 36.
    Cheung, L.K.C.: The unity of language and logic in Wittgenstein’s Tractatus. Philos. Invest. 29(1), 22–50 (2006)CrossRefGoogle Scholar
  37. 37.
    Zalabardo, J.: Representation and reality in Wittgenstein’s Tractatus. Oxford University Press, Oxford (2015)CrossRefGoogle Scholar
  38. 38.
    Rios, D.: Models and modeling in the social sciences. Perspect. Sci. 21(2), 221–225 (2013)CrossRefGoogle Scholar
  39. 39.
    Backlund, A.: The definition of system. Kybernetes 29(4), 444–451 (2000)zbMATHCrossRefGoogle Scholar
  40. 40.
    Kulieshov, A.: Simplicity and complexity in metaphysics. Path Sci. 4(6), 3001–3006 (2018)CrossRefGoogle Scholar
  41. 41.
    Barney, J.B.: Firm resources and sustained competitive advantage. J. Manag. 17(1), 99–120 (1991)Google Scholar
  42. 42.
    Flak, O.: Theoretical foundation for managers’ behavior analysis by graph-based pattern matching. Int. J. Contemp. Manag. 12(4), 110–123 (2013)Google Scholar
  43. 43.
    Beshears, J., Gino, F.: Leader as decision architects. Harv. Bus. Rev. 5, 51–62 (2015)Google Scholar
  44. 44.
    Curtis, B., Kellner, M., Over, J.: Process modelling. Commun. ACM 35(9), 75–90 (1992)CrossRefGoogle Scholar
  45. 45.
    Flak, O.: Concept of managerial tools based on the system of organizational terms. In: Knosala, R. (ed.) Innovation in Management and Production Engineering, pp. 187–197. Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją, Opole (2013)Google Scholar
  46. 46.
    Flak, O.: Results of observations of managers based on the system of organizational terms. In: Nalepka, A., Ujwary, A. (eds.) Business and Non-profit Organizations Fading Increased Competition and Growing Customers’ Demands, pp. 89–102. Wyższa Szkoła Biznesu, Nowy Sącz (2013)Google Scholar
  47. 47.
    Flak, O.: Ustalanie celów i zadań za pomocą narzędzi menedżerskich online - wyniki obserwacji,” Studia Ekonomiczne, Nr 199. Uniwersytet Ekonomiczny w Katowicach, Katowice, pp. 46–57 (2013)Google Scholar
  48. 48.
    Flak, O., Pyszka, A.: Differences in perception of the participants in the management process and its real trajectory. J. Entrep. Manag. Innov. 9(4), 65–66 (2013)Google Scholar
  49. 49.
    Shepherd, A.M., Gibbs, MCh.: Remembering things. Inf. Soc. 24, 47–53 (2008)CrossRefGoogle Scholar
  50. 50.
    Flak, O., Alnajjar, J.: Ocena spójności intertekstowej w planowaniu projektu. Wyniki badania z wykorzystaniem układu wielkości organizacyjnych. Lingwist. Stosow. Nr 13, 7–13 (2015)Google Scholar
  51. 51.
    Flak, O., Alnajjar, J.: Linguistic analysis of managers’ behaviour aimed at replacing human managers with robots. In: Proceedings of the 15th European Conference on Research Methodology for Business and Management Studies Kingston Business School. Kingston University London, London, pp. 1–8 (2016)Google Scholar
  52. 52.
    Renkema, J.: Improving the quality of governmental documents: a combined academic and professional approach. In: Cheng, W., Kong, K.C.C. (eds.) Professional Communication: Collaboration Between Academics and Practitioners, pp. 173–190. Hong Kong University Press, Hong Kong (2009)CrossRefGoogle Scholar
  53. 53.
    Hoffmann-Burdzińska, K., Flak, O.: management by objectives as a method of measuring HR teams effectiveness. J. Posit. Manag. 6(3), 67–82 (2015)CrossRefGoogle Scholar
  54. 54.
    Flak, O., Hoffmann-Burdzińska, K.: Management techniques and tools in project planning—Part 2. Qualitative results of research. In: Knosala, R. (ed.) Innowacje w zarządzaniu i inżynierii produkcji, vol. 1, pp. 288–298. Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją, Opole (2016)Google Scholar
  55. 55.
    Flak, O., Hoffmann-Burdzińska, K.: “Managerial Tools’ Influence on a planning process. results of the experiment. In: Nalepka, A., Ujwary, A. (eds.) Business and Non-profit Organizations Fading Increased Competition and Growing Customers’ Demands, pp. 119–139. Wyższa Szkoła Biznesu, Nowy Sącz (2016)Google Scholar
  56. 56.
    Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vis. 84(2), 163–183 (2009)CrossRefGoogle Scholar
  57. 57.
    Russell, B.: An Inquiry into Meaning and Truth. Routledge, London (1996)Google Scholar
  58. 58.
    Storozhuk, A.: Perception: mirror-image or action? J. Gen. Philos. Sci. 38(2), 369–382 (2007)CrossRefGoogle Scholar
  59. 59.
    Bourne, M., Neely, A.: Implementing performance measurement systems: a literature review. Int. J. Bus. Perform. Manag. 5(1), 1–24 (2003)CrossRefGoogle Scholar
  60. 60.
    Dayan, P., Hinton, G.E., Neal, R.M.: The Helmholtz machine. Neural Comput. 7, 889–904 (1995)CrossRefGoogle Scholar
  61. 61.
    H. Rittel and M. Webber, Planning problems are wicked problems. In: Cross, N. (ed.) Developments in Design Methodology, pp. 135–144. Wiley, New York (1984)Google Scholar
  62. 62.
    Schaal, S.: Is imitation learning the route to humanoid robots? Trends Cognit. Sci. 3, 233–242 (1999)CrossRefGoogle Scholar
  63. 63.
    Dautenhahn, K.: Getting to know each other: artificial social intelligence for autonomous robots. Robot. Auton. Syst. 16, 333–356 (1995)CrossRefGoogle Scholar
  64. 64.
    Atkeson, C.G., Schaal, S.: Learning tasks from single demonstration. In: IEEE International Conference on Robotics and Automation (ICRA 97), pp. 1706–1712. IEEE Press (1997)Google Scholar
  65. 65.
    Breazeal, C., Scassellati, B.: Robots that imitate humans. Trends Cognit. Sci. 6(11), 481–487 (2002)CrossRefGoogle Scholar
  66. 66.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier, Burlington (2009)zbMATHGoogle Scholar
  67. 67.
    Kelleher, J.D., Namee, B.M., D’Arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics. MIT Press, Massachusetts (2015)zbMATHGoogle Scholar
  68. 68.
    Leonard, A.: The viable system model and its application to complex organizations. Syst. Pract. Action Res. 22(4), 223–233 (2009)CrossRefGoogle Scholar
  69. 69.
    Katja, G., John, S., Allan, D., Baobao, Z., Owain, E.: When will AI exceed human performance? Evidence from AI experts (3 May 2018). arXiv:1705.08807v3

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Radio and TelevisionUniversity of Silesia in KatowiceKatowicePoland

Personalised recommendations