Special Difference Operators and the Constants in the Classical Jackson-Type Theorems

  • Alexander G. Babenko
  • Yuriy V. KryakinEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


In this survey we will show how one can use the operators
$$\displaystyle W_{2k}(f,h)(x) :=(-1)^k \frac 1{ h \binom {2k} k}\int _{-h}^h \ \widehat \Delta _t^{2k} f(x) \left ( 1 - \frac {|t|}h \right )\, dt, \qquad h>0,$$
$$\displaystyle \widehat \Delta _h^{m} f(x):=\sum _{j=0}^{m} (-1)^{j+m} \binom {m}{j} f(x+jh-mh/2),$$
to indicate the sharp order (with respect to k) of the Jackson–Stechkin constants in the main theorems of the classical approximation theory.



The work of A.G. Babenko was supported by the Russian Foundation for Basic Research (project no. 18-01-00336a) and by the Ural Federal University within the Russian Academic Excellence Project “5-100” (agreement no. 02.A03.21.0006).


  1. 1.
    H.S. Shapiro, A Tauberian theorem related to approximation theory. Acta Math. 120, 279–292 (1968)MathSciNetCrossRefGoogle Scholar
  2. 2.
    H.S. Shapiro, Smoothing and Approximation of Functions. Mathematical Studies, vol. 24 (Van Nostrand Reinhold, New York, 1970)Google Scholar
  3. 3.
    S.B. Stechkin, On the order of the best approximations of continuous functions. Izv. Akad. Nauk SSSR, Ser. Mat. 15, 219–242 (1951, in Russian)Google Scholar
  4. 4.
    Y.A. Brudnyi, The approximation of functions by algebraic polynomials. Math. USSR Izvestia 2(4), 735–743 (1968)CrossRefGoogle Scholar
  5. 5.
    S. Foucart, Y. Kryakin, A. Shadrin, On the exact constant in Jackson-Stechkin inequality for the uniform metric. Constr. Approx. 29(2), 157–179 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A.G. Babenko, Y.V. Kryakin, P.T. Staszak, Special moduli of continuity and the constant in the Jackson–Stechkin theorem. Constr. Approx. 38(3), 339–364 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A.G. Babenko, Y.V. Kryakin, On constants in the Jackson Stechkin theorem in the case of approximation by algebraic polynomials. Proc. Steklov Inst. Math. 303, 18–30 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    O.L. Vinogradov, V.V. Zhuk, The rate of decrease of constants in Jackson type inequalities in dependence of the order of modulus of continuity, in Zap. Nauchn. Sem. POMI, vol. 383 (POMI, St. Petersburg, 2010), pp. 33–52Google Scholar
  9. 9.
    O.L. Vinogradov, V.V. Zhuk, Estimates for functionals with a known moment sequence in terms of deviations of Steklov type means. J. Math. Sci. (New York) 178(2), 115–131 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    O.L. Vinogradov, V.V. Zhuk, Estimates for functionals with a known finite set of moments in terms of deviations of operators constructed with the use of the Steklov averages and finite differences. J. Math. Sci. (New York) 184(6), 679–698 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    O.L. Vinogradov, V.V. Zhuk, Estimates for functional with a known finite set of moments in terms of moduli of continuity and behaviour of constants in the Jackson-type inequalities. St. Petersburg Math. J. 24(5), 691–721 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    O.L. Vinogradov, V.V. Zhuk, Estimates for functionals with a known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment. St. Petersburg Math. J. 25(3), 421–446 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Whitney, On the functions with bounded n-th differences. J. Math. Pures Appl. 36(9), 67–95 (1957)MathSciNetzbMATHGoogle Scholar
  14. 14.
    B. Sendov, On the constants of H. Whitney. C. R. Acad. Bulg. Sci. 35(4), 431–434 (1982)zbMATHGoogle Scholar
  15. 15.
    K. Ivanov, M. Takev, \(O(n \ln (n))\) bounds of constants of H. Whitney. C. R. Acad. Bulg. Sci. 38(9), 1129–1131 (1985)Google Scholar
  16. 16.
    P. Binev, O(n) bounds of Whitney constants. C. R. Acad. Bulg. Sci. 38(10), 1315–1317 (1985)MathSciNetGoogle Scholar
  17. 17.
    B. Sendov, The constants of H. Whitney are bounded. C. R. Acad. Bulg. Sci. 38(10), 1299–1302 (1985)zbMATHGoogle Scholar
  18. 18.
    Y.V. Kryakin, Whitney constants. Mat. Zametki 46(2), 155–157 (1989, in Russian)Google Scholar
  19. 19.
    Y.V. Kryakin, Whitney’s constants and Sendov’s conjectures. Math. Balkanica (N.S.) 16(1–4), 235–247 (2002)Google Scholar
  20. 20.
    Y.V. Kryakin, On Whitney’s theorem and constants. Russ. Acad. Sci. Sbornik Math. 81(2), 281–295 (1995)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Gilewicz, I.A. Shevchuk, Y.V. Kryakin, Boundedness by 3 of the Whitney interpolation constant. J. Approx. Theory 119(2), 271–290 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    V.K. Dzyadyk, I.A. Shevchuk, Theory of Uniform Approximation of Functions by Polynomials (Walter de Gruyter, Berlin, 2008)zbMATHGoogle Scholar
  23. 23.
    Y.V. Kryakin, On exact constants in the Whitney theorem. Math. Notes 54(1), 688–700 (1993)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Y.V. Kryakin, On functions with bounded n-th differences. Izv. Math. 61(2), 331–346 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    O. Zhelnov, Whitney constants are bounded by 1 for k = 5,  6,  7. East J. Approx. 8, 1–14 (2002)MathSciNetzbMATHGoogle Scholar
  26. 26.
    O. Zhelnov, Whitney’s inequality and its generalizations. Ph.D., Kiev, 2004, 128 pp.Google Scholar
  27. 27.
    H. Bohr, Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms. Pr. Mat.-Fiz. 43, 273–288 (1935) (Collected Mathematical Works II, C 36)Google Scholar
  28. 28.
    J. Favard, Sur l’pproximation des fonctions périodiques par des polynomes trigonométriques. C. R. Acad. Sci. Paris 203, 1122–1124 (1936)zbMATHGoogle Scholar
  29. 29.
    J. Favard, Sur les meilleurs procedes d’approximation de certaies clasess de fonctions par des polynomes trigonometriques. Bull. Sci. Math. 61, 209–224, 243–256 (1937)zbMATHGoogle Scholar
  30. 30.
    N.I. Akhiesier, M.G. Krein, On the best approximation of periodic functions. DAN SSSR 15, 107–112 (1937, in Russian)Google Scholar
  31. 31.
    N.P. Korneichuk, On the best approximation of continuous functions. Izv. Akad. Nauk SSSR Ser. Mat. 27(1), 29–44 (1963)MathSciNetGoogle Scholar
  32. 32.
    N.P. Korneichuk, Precise constant in Jackson’s inequality for continuous periodic functions. Math. Notes 32(5), 818–821 (1982)CrossRefGoogle Scholar
  33. 33.
    V.G. Babenko, V.V. Shalaev, Best approximation estimates resulting from the Chebyshev criterion. Math. Notes 49(4), 431–433 (1991)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Y.V. Kryakin, Constants in Jackson’s theorem. UWr Report 141, 1–14 (2005)Google Scholar
  35. 35.
    Y.V. Kryakin, Bohr–Favard inequality for differences and constants in the Jackson–Stechkin theorem, 1–6 (2005). arXiv: math/0512048v1Google Scholar
  36. 36.
    A.G. Babenko, Y.V. Kryakin, Integral approximation of the characteristic function of an interval and the Jackson inequality in \(C(\mathbb T)\). Proc. Steklov Inst. Math. 265(Suppl. 1), 56–63 (2009)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A.G. Babenko, Y.V. Kryakin, Integral approximation of the characteristic function of an interval by trigonometric polynomials. Proc. Steklov Inst. Math. 264(Suppl. 1), 19–38 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
    J. Geronimus, Sur un probléme extr‘emal de Tchebycheff. Izv. Akad. Nauk SSSR Ser. Mat. 2(4), 445–456 (1938)zbMATHGoogle Scholar
  39. 39.
    F. Peherstorfer, On the representation of extremal functions in the L 1-norm. J. Approx. Theory 27(1), 61–75 (1979)MathSciNetCrossRefGoogle Scholar
  40. 40.
    A.G. Babenko, Y.V. Kryakin, V.A. Yudin, On one of Geronimus’s results. Proc. Steklov Inst. Math. 273(Suppl. 1), 37–48 (2011)MathSciNetCrossRefGoogle Scholar
  41. 41.
    J. Geronimus, On some extremal properties of polynomials. Ann. Math. 37(2), 483–517 (1936)MathSciNetCrossRefGoogle Scholar
  42. 42.
    J. Geronimus, Sur un problème de F. Riesz et le problème généralisé de Tchebycheff–Korkine–Zolotareff. Izv. Akad. Nauk SSSR Ser. Mat. 3(3), 279–288 (1939)Google Scholar
  43. 43.
    A.G. Babenko, N.V. Dolmatova, Y.V. Kryakin, Jackson’s exact inequality with a special modulus of continuity. Proc. Steklov Inst. Math. 284(Suppl. 1), 41–58 (2014)MathSciNetCrossRefGoogle Scholar
  44. 44.
    W. Stekloff, Sur les problemes de représentation des fonctions a l’aide de polynomes, du calcul approché des intégrales définies, du développement des fonctions en séries infinies suivant les polynomes et de l’interpolation, considérés au point de vue des idées de Tchebycheff, in Proceeding of ICM, Toronto (1924), pp. 631–640Google Scholar
  45. 45.
    C. Neumann, Untersuchungen über das Logarithmische und Newton’sche potential (Teubner, Leipzig, 1877)zbMATHGoogle Scholar
  46. 46.
    J. Boman, H. Shapiro, Comparison theorems for a generalized modulus of continuity. Ark. Mat. 9, 91–116 (1971)MathSciNetCrossRefGoogle Scholar
  47. 47.
    H.F. Sinwel, Uniform approximation of differentiable functions by algebraic polynomials. J. Approx. Theory 32, 1–8 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.N. N. Krasovskii Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.Institute of Natural Sciences and MathematicsUral Federal University named after the First President of Russia B. N. YeltsinEkaterinburgRussia
  3. 3.Institute of MathematicsUniversity of WroclawWroclawPoland

Personalised recommendations