Advertisement

Assessment of Sustainability on Dairy Farms in Central Germany Based on Energy and Nutrient Balances

  • Clara Heider-van-DiepenEmail author
Chapter
Part of the Sustainable Production, Life Cycle Engineering and Management book series (SPLCEM)

Abstract

An ecological evaluation of farms is shown using “REPRO”, a software, which makes it possible to represent agricultural actions including consequences. The system approach reduces the complexity of nature to a cycle where agricultural activity has an influence on. Thus, all decisions play a significant role. “REPRO” enables e.g. a condition analysis. The program consists of a crop cultivation and an animal area. For the overall farm analyze, the crop production results are transferred to the animal area. The climate impact is illustrated by a greenhouse gas balance, the ratio of nutrient emissions and energy intensity in their carbon dioxide equivalents to the product. The results show to what extend the examined dairy farms differ and where they resemble each other. It is shown that keeping cattle with an increased amount of straw and solid manure disposal leads to an increase in nitrous oxide emissions compared to low straw stabling and liquid manure removal. But in slurry storage this leads to a higher methane emission. Oversizing of agricultural machinery in animal feed production could also be identified. The ratios to the product show a high degree of similarity in two farms, although one farm has significantly lower emissions.

Keywords

Sustainability Dairy production REPRO Energy and nutrient balance Carbon footprint 

References

  1. 1.
    Petrick M, Buchenrieder G (2007) Sustainable rural development: what is the role of the agri-food sector? IAMO, HalleGoogle Scholar
  2. 2.
    Pacini C, Lazzerini G, Migliorini P, Vazzana C (2009) An indicator-based framework to evaluate sustainability of farming systems: review of applications in Tuscany. Ital J Agron 23–40CrossRefGoogle Scholar
  3. 3.
    Enquete-Kommission (1998) Final report of the Enquete-Kommission: Konzept Nachhaltigkeit - Schutz des Menschen und der Umwelt - Ziele und Rahmenbedingungen einer Nachhaltig zukunftsverträglichen Entwicklung. Bundesdrucksache 13/11200 of 26 Jun 1998. 13. Legislative period. BerlinGoogle Scholar
  4. 4.
    Kruse-Graumann L (1996) Psychologische Ansätze zur Entwicklung einer zukunftsfähigen Gesellschaft. Nachhaltige Entwicklung - Zukunftschancen für Mensch und Umwelt. Publisher: Karstenholz H-G, Erdmann K-H, Wolf M. Springer, HeidelbergGoogle Scholar
  5. 5.
    Hülsbergen KJ (2002) Entwicklung und Anwendung eines Bilanzierungsmodells zur Bewertung der Nachhaltigkeit landwirtschaftlicher Systeme. Habilitation thesis. Shaker VerlagGoogle Scholar
  6. 6.
    Küstermann B, Kainz M, Hülsbergen KJ (2008) Modelling carbon cycles and estimation of greenhouse gas emissions from organic and conventional farming systems. Renew Agric Food Syst 23:38–52CrossRefGoogle Scholar
  7. 7.
    Heider-van Diepen C (2018) Erfassung der Nachhaltigkeit in mitteldeutschen Milchviehbetrieben anhand von Energie- und Nährstoffbilanzen. Master thesis. Martin-Luther-Universität Halle-WittenbergGoogle Scholar
  8. 8.
    Piatkowski B, Jentsch W, Derno M (2013) Neue Ergebnisse zur Methanproduktion und zu deren quantitativer Vorhersage beim Rind. Züchtungskunde 82. Verlag Eugen Ulmer. StuttgartGoogle Scholar
  9. 9.
    Dämmgen U, Amon B, Gyldenkaerne S, Hutchings NJ, Klausing HK, Haenel H-D, Rösemann C (2011) Reassessment of the calculation procedure for the volatile solids ecretion rates of cattle and pics in Austria, Danish and German agricultural emission inventories. Landesbauforschung 115–126Google Scholar
  10. 10.
    Rösemann C, Haenel H-D, Dämmgen U, Freibauer A, Döring U, Wulf S, Eurich-Menden B, Döhler H, Schreiner C, Osterburg B (2017) Calculations of gaseous and particulate emissions from German agriculture 1990–2015: report on methods and data (RMD) submission 2017. Thünen Report 46, BraunschweigGoogle Scholar
  11. 11.
    Döhler H, Eurich-Menden B, Dämmgen U, Osterburg B, Lüttich M, Berg-Schmidt A, Berg W, Brunsch R (2002) BMVEL/UBA-Ammoniak- Emissionsinventar der deutschen Landwirtschaft und Minderungsszenarien bis zum Jahre 2010. BerlinGoogle Scholar
  12. 12.
    Dämmgen U, Haenel H-D, Rösemann C, Bade W, Müller-Landenlauf M, Eurich-Menden B, Döhler H, Hutchings NJ (2010) An improved data base for the description od dairy cows in the german emission model GAS-EM. Agric Foresty Res 87–100Google Scholar
  13. 13.
    IPCC (Intergovernmental Panel on Climate Change) (2006) IPCC guidelines for national greenhouse gas inventories. In: Eggleston H-S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Prepared by the national greenhouse gas enventories programmePublisher: IGES Japan, vol 4. Agriculture, Foresty and other Lan useGoogle Scholar
  14. 14.
    Flachowsky G (2001) Nährstoffökonomische und ökologische Aspekte bei der Erzeugung von essbarem Eiweiß tierischer Herkunft bei unterschiedlichem Leistungsniveau der Nutztiere. Landbauforschung Völkenrode: FAL agricultural research 50:38–49Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Privates Institut für Nachhaltige Landbewirtschaftung—INLHalle (Saale)Germany

Personalised recommendations