Dynamics of Solitons in High-Order Nonlinear Schrödinger Equations in Fiber Optics

  • Gholam-Ali ZakeriEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 200)


In optical fibers, the higher order nonlinear Schrödinger equation (NLSE) with cubic-quintic nonlinearity describes the propagation of extremely short pulses. We construct kink, bright and dark solitons of a generalized higher order NLSE in a cubic-quintic non-Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physical science and engineering. Moreover, we also present the formation conditions on solitary wave parameters in which kink, dark and bright solitons can exist for this media. We graphically illustrate the collision of the constructed soliton solutions that help realize the physical phenomena of NLSE. We also outline descriptions of various issues on integrability. We discuss the stability of the model in normal dispersion and anomalous regime by using the modulation instability analysis. Many other types of such models arising in applied sciences can also be solved by these reliable, powerful and effective methods.


  1. 1.
    Akhmediev, N.N., Ankiewicz, A.: Solitons, Nonlinear Pulses and Beams. Chapman and Hall, London (1997)zbMATHGoogle Scholar
  2. 2.
    Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)Google Scholar
  3. 3.
    Hasegawa, A.: Optical Solitons in Fibers. Springer-Verlag, Berlin (1989)Google Scholar
  4. 4.
    Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Clarendon Press, Oxford (1995)zbMATHGoogle Scholar
  5. 5.
    Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23(3), 142–144 (1973)CrossRefGoogle Scholar
  6. 6.
    Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23(4), 171–172 (1973)CrossRefGoogle Scholar
  7. 7.
    Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095 (1980)CrossRefGoogle Scholar
  8. 8.
    Porsezian, K., Nakkeeran, K.: Optical soliton propagation in an erbium doped nonlinear light guide with higher order dispersion. Phys. Rev. Lett. 74, 2941 (1995)CrossRefGoogle Scholar
  9. 9.
    Chaohao, G. (ed.): Soliton Theory and its Applications. Springer, Hangzhou, Germany (1990)Google Scholar
  10. 10.
    Belashov, V.Y., Vladimirov, S.V.: Solitary Waves in Dispersive Complex Media. Springer-Verlag, Berlin (2004)zbMATHGoogle Scholar
  11. 11.
    Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)CrossRefGoogle Scholar
  12. 12.
    Yomba, E., Zakeri, G.A.: Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers. Chaos 26, 083115 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013). (in Special issue on optical rogue waves in Journal of Optics)CrossRefGoogle Scholar
  14. 14.
    Akhmediev, N., (and 37 other authors): Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016)Google Scholar
  15. 15.
    Hao, R., Li, L., Li, Z., Yang, R., Zhou, G.: A new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 245, 383–390 (2005)CrossRefGoogle Scholar
  16. 16.
    Rodas-Verde, M.I., Michinel, H., Paez-Grca, V.M.: Controllable soliton emission from a Bose-Einstein condensate. Phys. Rev. Lett. 95, 153903 (2005)CrossRefGoogle Scholar
  17. 17.
    Ogusu, K., Yamasaki, J., Maeda, S., Kitao, M., Minakata, M.: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29, 265–267 (2004)CrossRefGoogle Scholar
  18. 18.
    Abdullaeev, F.: Theory of Solitons in Inhomogeneous Media. Wiley & sons, New York (1994)Google Scholar
  19. 19.
    Senthilnathan, K., Abobaker, A.M., Nakkeeran, K.: In: Proceedings of Progress in Electromagnetics Research Symposium, PIERS, p. 1396 (2009)Google Scholar
  20. 20.
    Dai, C.Q., Wang, Y.Y., Wang, X.G.: Ultrashort self-similar solutions of the cubic-quintic nonlinear Schrödinger equation with distributed coefficients in the inhomogeneous fiber. J. Phys. A: Math. Theor. 44, 155203 (2011)CrossRefGoogle Scholar
  21. 21.
    Zakeri, G.A., Yomba, E.: Stable solitary-waves in a higher order generalized nonlinear Schrödinger equation with space- and time-variable coefficients. AIP Conf. Proc. 1562, 223 (2013)CrossRefGoogle Scholar
  22. 22.
    Zakeri, G.A., Yomba, E.: Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations. J. Phys. Soc. Jpn. 82, 084002 (2013)CrossRefGoogle Scholar
  23. 23.
    Yomba, E., Zakeri, G.A.: Solitons in a generalized space- and time-variable coefficients nonlinear Schrödinger equation with higher-order terms. Phys. Lett. A 377, 2995–3004 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yomba, E., Zakeri, G.A.: Dynamics of wide and snake-like pulses in coupled Schrödinger equations with full-modulated nonlinearities. Phys. Lett. A 380, 530–539 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Peleg, A., Nguyen, Q.M., Chung, Y.: Cross-talk dynamics of optical solitons in a broadband Kerr nonlinear system with weak cubic loss. Phys. Rev. A 82, 053830 (2010)CrossRefGoogle Scholar
  26. 26.
    Peleg, A., Chung, Y.: Cross-talk dynamics of optical solitons in multichannel waveguide systems with a Ginzburg-Landau gain-loss profile. Phys. Rev. A 85, 063828 (2012) (Erratum. Phys. Rev. A 88, 049904 (2013))Google Scholar
  27. 27.
    Mertens, F.G., Quintero, N.R., Bishop, A.R.: Nonlinear Schrödinger equation with spatiotemporal perturbations. Phys. Rev. E 81, 016608 (2010)CrossRefGoogle Scholar
  28. 28.
    Hoseini, S.M., Marchant, T.R.: Evolution of solitary waves for a perturbed nonlinear Schrödinger equation. Appl. Math. Comput. 216, 3642–3651 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Vuillon, L., Dutykh, D., Fedele, F.: Some special solutions to the Hyperbolic NLS equation. Commun. Nonlinear Sci. Numer. Simulat. 57, 202–220 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Quintero, N.R., Mertens, F.G., Bishop, A.R.: Generalized traveling-wave method, variational approach, and modified conserved quantities for the perturbed nonlinear Schrdinger equation. Phys. Rev. E 82, 016606 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Modern Phys. 83, 247–305 (2011)CrossRefGoogle Scholar
  32. 32.
    Collin, A., Massingnan, P., Pethick, C.J.: Energy-dependent effective interactions for dilute many-body systems. Phys. Rev. A 75, 013615 (2007)CrossRefGoogle Scholar
  33. 33.
    Tie, L., Xue, J.-K.: Tunneling dynamics of Bose-Einstein condensates with higher-order interactions in optical lattice. Chin. Phys. B 20, 120311 (2011)CrossRefGoogle Scholar
  34. 34.
    Wamba, E., Porsezian, K., Mohamadou, A., Kofané, T.C.: Instability domain of Bose-Einstein condensates with quantum fluctuations and three-body interactions. Phys. Lett. A 377, 262 (2013)CrossRefGoogle Scholar
  35. 35.
    Gardner, C.G., Green, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)CrossRefGoogle Scholar
  36. 36.
    Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure. Appl. Math. 21(5), 467–490 (1976)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. Func. Annal. Appl. 8(3), 226–235 (1974)CrossRefGoogle Scholar
  38. 38.
    Newell, A.C.: Solitons in Mathematics and Physics. SIAM, Philadelphia (1985)CrossRefGoogle Scholar
  39. 39.
    Bracken, P.: Integrable systems of partial differential equations (PDE) determined by structure equations and Lax pair. Phys. Lett. A 374, 501–503 (2010)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Mel’nikov, V.K.: New method for deriving nonlinear integrable systems. J. Math. Phys. 31, 1106 (1990)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Mikhailov, A.V. (ed.): Integrability. In: Lecture Notes in Physics, vol. 767. Springer-Verlag, Berlin (2008)Google Scholar
  42. 42.
    Fokas, A.S.: Symmetries and integrability. Stud. Appl. Math. 77, 253 (1987)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wadati, M., Sanuki, H., Konno, K.: Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 53, 419–436 (1975)CrossRefGoogle Scholar
  44. 44.
    Chai, J., Tian, B., Zhen, H.L., Sun, W.R.: Conservation laws, bilinear forms and solitons for a fifth-order nonlinear Schrödinger equation for the attosecond pulses in an optical fiber. Annal. Phys. 359, 371–384 (2015)CrossRefGoogle Scholar
  45. 45.
    Lin, J., Ren, B., Li, H.M., Li, Y.S.: Soliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. Phys. Rev. E 77, 036605 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Kundu, A.: Integrable nonautonomous nonlinear Schrödinger equations are equivalent to the standard autonomous equation. Phys. Rev. E 79, 015601 (2009)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Vinoj, M.N., Kuriakose, V.C.: Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations. Phys. Rev. E 62, 036605 (2000)CrossRefGoogle Scholar
  48. 48.
    Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)CrossRefGoogle Scholar
  49. 49.
    Priya, N.V., Senthilvelan, M.: Generalized Darboux transformation and N-th order rogue wave solution of a general coupled nonlinear Schrödinger equations. Comm. Nonlinear Sci. Numeric. Simulat. 20, 401–420 (2015)CrossRefGoogle Scholar
  50. 50.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley & sons, London (1974)zbMATHGoogle Scholar
  51. 51.
    Chen, A., Li, X.: Soliton solutions of the coupled dispersion-less equation. Phys. Lett. A 370, 281–286 (2007)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Gutkin, E.: Conservation laws for the nonlinear Schrödinger equation. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 2, 67–74 (1985)Google Scholar
  53. 53.
    Kim, J., Park, Q.H., Shin, H.J.: Conservation laws in higher-order nonlinear Schrödinger equations. Phys. Rev. E 58, 6746 (1998)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Li, M., Tian, B., Liu, W.J., Sun, K., Jiang, Y., Sun, Z.Y.: Conservation laws and soliton solutions for a nonlinear Schrödinger equation with self-consistent sources in plasmas. Phys. Scr. 81, 1–10 (2010)zbMATHGoogle Scholar
  55. 55.
    De Nicola, S.: Conservation laws for the non-linear Schrödinger equation. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 2, 5 (1993)CrossRefGoogle Scholar
  56. 56.
    Bindu, S.G., Mahalingam, A., Porsezian, K.: Dark soliton solutions of the coupled Hirota equation in nonlinear fiber. Phys. Lett. A 286, 321–331 (2001)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Tagal, R.S., Potasek, M.J.: Soliton solutions to coupled higher-order nonlinear Schrödinger equations. J. Math. Phys. 33, 1208–1215 (1992)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Xu, T., Chen, Y.: Darboux transformation of the coupled nonisospectral Gross-Pitaevskii sysytem and its multi-component generalization. Commun. Nonlinear Sci. Numer. Simulat. 57, 276–239 (2018)CrossRefGoogle Scholar
  59. 59.
    Sabbah, Y.H., Al Khawaja, U., Vinayagam, P.S.: Lax pair and new exact solutions of the nonlinear Dirac. Commun. Nonlinear Sci. Numer. Simulat. 61, 167–179 (2018)MathSciNetCrossRefGoogle Scholar
  60. 60.
    He, J., Xu, S., Porsezian, K.: N-order bright and dark rogue waves in a resonant erbium-doped fiber system. Phys. Rev. E 86, 066603 (2012)CrossRefGoogle Scholar
  61. 61.
    Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Chang, Y.F., Tabor, M., Weiss, J.: Analytic structure of the Henon-Heiles Hamiltonian in integrable and nonintegrable regimes. J. Math. Phys. 23, 531 (1982)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Xu, G.Q., Deng, S.F.: Painlevé analysis, integrability and exact solutions for a (2+1)-dimensoinal generalized Nizhnik-Novikov-Veselov equation. Eur. Phys. J. Plus 131, 385 (2016)CrossRefGoogle Scholar
  64. 64.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)CrossRefGoogle Scholar
  65. 65.
    Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)CrossRefGoogle Scholar
  66. 66.
    Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)CrossRefGoogle Scholar
  67. 67.
    Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry. Springer-Verlag, New York (2005)CrossRefGoogle Scholar
  68. 68.
    Zheng, Z., He, J.S., Cheng, Y.: Bäcklund transformation of the noncommutative Gelfand-Dickey hierarchy. J. High Energy Phys. 02, 069 (2004)Google Scholar
  69. 69.
    Conte, R., Mussette, M.: The Painlevé Handbook. Springer, Dordrecht, the Netherlands (2008)Google Scholar
  70. 70.
    Yomba, E., Zakeri, G.A.: N-soliton interactions in an extended Schrödinger equation with higher order of nonlinearities. Phys. B 483, 26–36 (2016)CrossRefGoogle Scholar
  71. 71.
    Yomba, E., Zakeri, G.A.: Collision of N-solitons in a fifth nonlinear Schrödinger equation. Wave Motion 72, 101–112 (2017)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Palacios, S.L., Fernández-Diáz, J.M.: Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion. Opt. Commun. 178, 457–460 (2000)CrossRefGoogle Scholar
  73. 73.
    Daniel, M., Kavitha, L.: Magnetization reversal through soliton flip in a biquadratic ferromagnet with varying exchange interactions. Phys. Rev. B 66, 184433 (2002)CrossRefGoogle Scholar
  74. 74.
    Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Physica D: Nonlinear Phenomena 238(5), 540–548 (2009)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Zakeri, G.A., Yomba, E.: Solitons in multi-body interactions for a fully modulated cubic-quintic Gross-Pitarvskii equation. Appl. Math. Model. 56, 1–14 (2018)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Zakeri, G.A., Yomba, E.: Modulational instability regions for coupled Ginzburg-Landau equations with higher order of nonlinearities. Phys. Rev. E 91, 062904 (2015)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Zakeri, G.A., Yomba, E.: Vector solitons in an extended coupled Schrödinger equations with modulated nonlinearities. Commun. Nonlinear Sci. Numer. Simulat. 30, 344–359 (2016)CrossRefGoogle Scholar
  78. 78.
    Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)CrossRefGoogle Scholar
  79. 79.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley and Sons, New Youk (1989)zbMATHGoogle Scholar
  80. 80.
    Nath, D., Roy, B., Roychoudhury, R.: Periodic waves and their stability in competing cubic-quintic nonlinearity. Opt. Commun. 393, 224–231 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, and Interdisciplinary Research Institute for the Sciences (IRIS)California State University - NorthridgeNorthridgeUSA

Personalised recommendations