Advertisement

On Dynamic Interactions Between Body Motion and Fluid Motion

  • Frank T. SmithEmail author
  • Samire Balta
  • Kevin Liu
  • Edward R. Johnson
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 200)

Abstract

This contribution on dynamic fluid-body interactions concentrates on applying mathematical/analytical ideas to complement direct numerical studies. The typical body may be of given shape or flexible depending on the context. In the background there are numerous real-world motivations in industry, biomedical and environmental applications, many of which involve high flow rates. A review of ideas developed over the last decade for cases of high flow rates first addresses inviscid approaches to one or more bodies free to move within a channel flow, a skimming sharp-edged body on a free surface, the sinking of a body in water and the rocking or rolling of a body on a solid surface, before moving on to more recent viscous-inviscid approaches for channel flows and boundary layers. The beginnings of certain current research projects are also outlined. These concern models of liftoff of a body from a solid surface, the impact of a smooth body during skimming and viscous-inviscid effects in the presence of more than one freely moving body. Linear and nonlinear mathematical properties as appropriate are described.

Keywords

Fluid-solid interactions Channel flow Skimming Lift-off 

Notes

Acknowledgements

Thanks for support are due (FTS) to EPSRC through grant numbers GR/T11364/01, EP/G501831/1, EP/H501665/1 during part of this research, and (SB) to the Republic of Turkey for financial support. The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme. The Mathematics of Sea Ice Phenomena when part of the work on this paper was finalised, supported by EPSRC grant number EP/K032208/1. Thanks are due to Roger Gent and Richard Moser at AeroTex, Rob Lewis at TotalSim, Sarah Bee and Mark Honeywood at Sortex-Buhler and UCL colleagues Robert Bowles, Nick Ovenden and Sergei Timoshin for very helpful discussions on body and particle movement in near-wall shear flow.

References

  1. 1.
    Smith, F.T., Ellis, A.S.: On interaction between falling bodies and the surrounding fluid. Mathematika 56, 140–168 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hicks, P.D., Smith, F.T.: Skimming impacts and rebounds on shallow liquid layers. Proc. R. Soc. A 467, 653–674 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Smith, F.T., Wilson, P.L.: Fluid-body interactions: clashing, skimming, bouncing. Phil. Trans. R. Soc. A 369, 3007–3024 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Smith, F.T., Wilson, P.L.: Body-rock or lift-off in flow. J. Fluid Mech. 735, 91–119 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Liu, K., Smith, F.T.: Collisions, rebounds and skimming. Phil. Trans. R. Soc. A 372(2020) (2014)Google Scholar
  6. 6.
    Smith, F.T., Johnson, E.R.: Movement of a finite body in channel flow. Proc. R. Soc. A 472(2191), 20160164 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Smith, F.T.: Free motion of a body in a boundary layer or channel flow. J. Fluid Mech. 813, 279–300 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Smith, F.T., Liu, K.: Flooding and sinking of an originally skimming body. J. Eng. Math. 107(1), 37–60 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu, J.: Shallow-water skimming, skipping and rebound problems, Ph.D. thesis, University College London (2017)Google Scholar
  10. 10.
    Balta, S.: On fluid-body and fluid-network interactions, Ph.D. thesis, University College London (2017)Google Scholar
  11. 11.
    Balta, S., Smith, F.T.: Fluid flow lifting a body from a solid surface (in preparation) (2018)Google Scholar
  12. 12.
    Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Foucaut, J.-M., Stanislas, M.: Take-off threshold velocity of solid particles lying under a turbulent boundary layer. Exp. Fluids 20(5), 377–382 (1996)CrossRefGoogle Scholar
  14. 14.
    Patankar, N.A., Huang, P.Y., Ko, T., Joseph, D.D.: Lift-off of a single particle in Newtonian and viscoelastic fluids by direct numerical simulation. J. Fluid Mech. 438, 67–100 (2001)CrossRefGoogle Scholar
  15. 15.
    Gray, J.M.N.T., Ancey, C.: Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535–588 (2011)CrossRefGoogle Scholar
  16. 16.
    Virmavirta, M., Kivekäs, J., Komi, P.V.: Take-off aerodynamics in ski jumping. J. Biomech. 34(4), 465–470 (2001)CrossRefGoogle Scholar
  17. 17.
    Miller, M.C., McCave, I.N., Komar, P.D.: Threshold of sediment motion under unidirectional currents. Sedimentology 24(4), 507–527 (1977)CrossRefGoogle Scholar
  18. 18.
    Owen, P.R.: Saltation of uniform grains in air. J. Fluid Mech. 20(2), 225–242 (1964)CrossRefGoogle Scholar
  19. 19.
    Shao, Y., Raupach, M.R., Findlater, P.A.: Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Rese.: Atmos. 98(D7), 12719–12726 (1993)CrossRefGoogle Scholar
  20. 20.
    Jia, L.-B., Li, F., Yin, X.-Z., Yin, X.-Y.: Coupling modes between two flapping filaments. J. Appl. Mech. 581, 199–220 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Guazzelli, E.: Sedimentation of small particles: how can such a simple problem be so difficult? C.R. Mećanique 334 (2006)Google Scholar
  22. 22.
    Godone, D., Stanchi, S.: Soil Erosion Studies. InTech (2011)Google Scholar
  23. 23.
    Andrew, M., David, M., deVeber, G., Brooker, L.A.: Arterial thromboembolic complications in paediatric patients. Thromb. Haemost. 78(1), 715–725 (1997)CrossRefGoogle Scholar
  24. 24.
    Babyn, P.S., Gahunia, H.K., Massicotte, P.: Pulmonary thromboembolism in children. Pediatr. Radiol. 35(3), 258–274 (2005)CrossRefGoogle Scholar
  25. 25.
    Baker Jr., W.F.: Diagnosis of deep venous thrombosis and pulmonary embolism. Med. Clin. North Am. 82(3), 459–476 (1998)CrossRefGoogle Scholar
  26. 26.
    Gaver, D.P. III, Jensen O.E., Halpern, D.: Surfactant and airway liquid flows. In: Nag, K. (ed.) Lung Surfactant and Disorder: Lung Biology in Health and Disease, vol. 201, p. 191. Taylor and Francis, London (2005)Google Scholar
  27. 27.
    Iguchi, Y., Kimura, K.: A case of brain embolism during catheter embolisation of head arteriovenous malformation. What is the mechanism of stroke? J. Neurol. Neurosurg. Psychiatry 78(1), 81 (2007)CrossRefGoogle Scholar
  28. 28.
    Secomb, T.W., Skalak, R., Özkaya, N., Gross, J.F.: Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405–423 (1986)CrossRefGoogle Scholar
  29. 29.
    White, A.H.: Mathematical modelling of the embolisation process in the treatment of arteriovenous malformations. Ph.D. Thesis, University of London (2008)Google Scholar
  30. 30.
    Balta, S., Smith, F.T.: Inviscid and low viscosity flows in multi-branching and reconnecting networks. J. Eng. Math. 104(1), 1–18 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ellis, A.S.: Modelling chute delivery of grains in a food-sorting process, Ph.D. Thesis, University of London (2007)Google Scholar
  32. 32.
    Ellis, A.S., Smith, F.T.: A continuum model for a chute flow of grains. SIAM J. Appl. Math. 69(2), 305–329 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Koch, D.L., Hill, R.J.: Inertial effects in suspension and porous-media flows. Annu. Rev. Fluid Mech. 33, 619 (2001)CrossRefGoogle Scholar
  34. 34.
    Willetts, B.: Aeolian and fluvial grain transport. Philos. Trans. R. Soc. Lond. A 356(1747), 2497–2513 (1998)CrossRefGoogle Scholar
  35. 35.
    Bowles, R.G.A., Smith, F.T.: Lifting multi-blade flows with interaction. J. Fluid Mech. 415, 203–226 (2000)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Purvis, R., Smith, F.T.: Planar flow past two or more blades in ground effect. Q. J. Mech. Appl. Math. 57(1), 137–160 (2004)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Smith, F.T., Timoshin, S.N.: Planar flows past thin multi-blade configurations. J. Fluid Mech. 324, 355–377 (1996b)CrossRefGoogle Scholar
  38. 38.
    Smith, F.T., Ovenden, N.C., Franke, P.T., Doorly, D.J.: What happens to pressure when a flow enters a side branch? J. Fluid Mech. 479, 231–258 (2003)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Tuck, E.O., Dixon, A.: Surf-skimmer planing hydrodynamics. J. Fluid Mech. 205, 581–592 (1989)CrossRefGoogle Scholar
  40. 40.
    Smith, F.T.: Upstream interactions in channel flows. J. Fluid Mech. 79, 631–655 (1977)CrossRefGoogle Scholar
  41. 41.
    Howison, S.D., Ockendon, J.R., Oliver, J.M.: Oblique slamming, planing and skimming. J. Eng. Math. 48, 321–337 (2004)CrossRefGoogle Scholar
  42. 42.
    Khabakhpasheva, T.I., Korobkin, A.A.: Oblique impact of a smooth body on a thin layer of liquid. Proc. R. Soc. 469(2151) (2013)Google Scholar
  43. 43.
    Wagner, H.: Über Stoß-und gleitvorgänge an der Oberflaäche von Flüssigkeiten (Phenomena associated with impacts and sliding on liquid surfaces). Zeitschr. Math. Mech. 12 (1932)Google Scholar
  44. 44.
    Batyaev, E.A., Khabakhpasheva, T.I.: Initial stage of the inclined impact of a smooth body on a thin fluid layer. Fluid Dyn. 48(2), 211–222 (2013)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Stewartson, K., Williams, P.G.: Self-induced separation. Proc. R. Soc. Lond. A 312(1509), 181–206 (1969)Google Scholar
  46. 46.
    Smith, F.T.: The laminar separation of an incompressible fluid streaming past a smooth surface. Proc. R. Soc. Lond. 356(1687), 443–463 (1977)CrossRefGoogle Scholar
  47. 47.
    Scheichl, B., Kluwick, A., Smith, F.T.: Break-away separation for high turbulence intensity and large Reynolds number. J. Fluid Mech. 670, 260–300 (2011)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Lagally, M.: Die reibungslose Strömung im Aussengebiet zweier Kreise. Z. Angew. Math. Mech. 9, 299–305 (1929)CrossRefGoogle Scholar
  49. 49.
    Johnson, E.R., McDonald, N.R.: The motion of a vortex near two circular cylinders. Proc. Roy. Soc. A 460, 939–954 (2004)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Crowdy, D.G.: Calculating the lift on a finite stack of cylindrical aerofoils. Proc. Roy. Soc. A 462, 1387–1407 (2006)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Crowdy, D.G., Marshall, J.S.: Analytical formulae for the Kirchhoff-Routh path function in multiply connected domains. Proc. Roy. Soc. A 461, 2477–2501 (2005)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Johnson, E.R., McDonald, N.R.: Vortices near barriers with multiple gaps. J. Fluid Mech. 531, 335–358 (2005)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Nehari, Z.: Conformal Mapping. McGraw-Hill, New York (1952)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Frank T. Smith
    • 1
    Email author
  • Samire Balta
    • 1
  • Kevin Liu
    • 1
  • Edward R. Johnson
    • 1
  1. 1.University College LondonLondonUK

Personalised recommendations