Advertisement

A Simple Model of Periodic Reproduction: Selection of Prime Periods

  • Raul Abreu de AssisEmail author
  • Mazílio Coronel Malavazi
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 200)

Abstract

A discrete-time model of periodic reproduction with inter and intra-specific competition is proposed as a tool to investigate the selection of prime reproduction cycle lengths, observed in certain species of cicadas. An approximation for the average populations is proposed and analyzed for the case of 2 and 13 populations. Results indicate that prime periods are in advantage when compared with composite ones, suggesting that the prime periods displayed by cicada species in nature might arise by the process of natural selection of adaptive values (and not as a random result of evolutionary constraints).

Keywords

Difference equations Periodic reproduction Prime numbers Cicadas Magicicada 

References

  1. 1.
    Alexander, R.D., Moore, T.E.: The evolutionary relationships of 17-year and 13-year cicadas, and three new species. Miscellaneous Publications Museum of Zoology, pp. 1–59. University of Michigan, Ann Arbor (1962)Google Scholar
  2. 2.
    Behncke, H.: Periodical cicadas. Math. Biol. 40, 413–431 (2000)Google Scholar
  3. 3.
    Dybas, H.S., Lloyd, M.: The periodical cicada problem ii. evolution. Evolution 20, 466–505 (1966)Google Scholar
  4. 4.
    Edelstein-Keshet, L.: Mathematical Models in Biology. McGraw-Hill Inc., New York (1988)zbMATHGoogle Scholar
  5. 5.
    Edelstein-Keshet, L.: A mathematical approach to cytoskeletal assembly. Eur. Biophys. J. 24, 521–531 (1998)CrossRefGoogle Scholar
  6. 6.
    Gould, S.J.: Of bamboos, cicadas, and the economy of Adam Smith. Ever Since Darwin, 97–102 (1977)Google Scholar
  7. 7.
    Gould, S.J., Lewontin, R.C.: The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205, 581–598 (1979)CrossRefGoogle Scholar
  8. 8.
    Grant, P.R.: The priming of periodical cicada life cycles. Trends Ecol. Evol. 100, 433–438 (2007)Google Scholar
  9. 9.
    Heliövaara, K., Väisänen, R., Simon, C.: Evolutionary ecology of periodical insects. Trends Ecol. Evol. 9(12), 475–480 (1994)CrossRefGoogle Scholar
  10. 10.
    Karban, R.: Increased reproductive success at high densities and predator satiation for periodical cicadas. Ecology 63, 321–328 (1982)CrossRefGoogle Scholar
  11. 11.
    Karban, R.: Opposite density effects of nymphal and adult mortality for periodical cicadas. Ecology 65, 1656–1661 (1984)CrossRefGoogle Scholar
  12. 12.
    Karban, R.: Evolution of prolonged development: a life table analysis for periodical cicadas. Am. Nat. 150(4), 446–461 (1997)CrossRefGoogle Scholar
  13. 13.
    Lehmann-Ziebarth, N., Heideman, P.P., Shapiro, R.A., Stoddart, S.L., Hsiao, C.C.L., Stephenson, G.R., Milewski, P.A., Ives, A.R.: Evolution of periodicity in periodical cicadas. Ecology 86(12), 3200–3211 (2005)CrossRefGoogle Scholar
  14. 14.
    Lloyd, M., e White, J. A., : Sympatry of periodical cicada broods and the hypothetical four-year acceleration. Evolution 30, 786–801 (1976)Google Scholar
  15. 15.
    Martin, A.P., e Simon, C., : Anomalous distribution of nuclear and mitochondrial DNA markers in periodical cicadas. Nature 336, 237–239 (1988)Google Scholar
  16. 16.
    Sanborn, A.F.: Catalogue of the Cicadoidea (Hemiptera: Auchenorrhyncha). Elsevier, New York (1988)Google Scholar
  17. 17.
    Soper, R.S., Delyzer, A.J., e Smith, L. F. R., : The genus massospora entomopathogenic for cicadas. part. ii. biology of massospora levispora and its host okanagana rimosa, with notes on massospora cicadina on the periodical cicadas. Ann. Entomol. Soc. Am. 29, 89–95 (1976)Google Scholar
  18. 18.
    Tielbörger, K., e Petrù, M., : An experimental test for effects of the maternal environment on delayed germination. J. Ecol. 98, 1216–1223 (2010)Google Scholar
  19. 19.
    Webb, G.F.: The prime number periodical cicada problem. Discrete Continuous Dyn. Syst.—Ser. B 1, 387–399 (2001)Google Scholar
  20. 20.
    Whitham, T.G.: The theory of habitat selection: examined and extended using Pemphigus aphids. Am. Nat. 115, 449–466 (1980)CrossRefGoogle Scholar
  21. 21.
    White, J., Lloyd, M., Zar, J.H.: Faulty eclosion in crowded suburban periodical cicadas: populations out of control. Ecology 60(2), 305–315 (1979), Wiley Online LibraryGoogle Scholar
  22. 22.
    Williams, K.S., e Simon, C.: The ecology, behavior and evolution of periodical cicadas. Annu. Rev. Entomol. 40, 269–295 (1995)Google Scholar
  23. 23.
    Yoshimura, J., Hayashi, T., Tanaka, Y., Tainaka, K., e Simon, C.: Selection for prime-number intervals in a numerical model of periodical cicada evolution. Evolution 63, 288–294 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Raul Abreu de Assis
    • 1
    Email author
  • Mazílio Coronel Malavazi
    • 2
  1. 1.Departamento de MatemáticaUNEMATSinopBrazil
  2. 2.Instituto de Ciências Naturais, Humanas e Sociais (ICNHS)—UFMTSinopBrazil

Personalised recommendations