Automatic Retinal Vascularity Identification and Artery/Vein Classification Using Near-Infrared Reflectance Retinographies

  • Joaquim de MouraEmail author
  • Jorge Novo
  • Marcos Ortega
  • Noelia Barreira
  • Pablo Charlón
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 983)


The retinal microcirculation structure is commonly used as an important source of information in many medical specialities for the diagnosis of relevant diseases such as, for reference, hypertension, arteriosclerosis, or diabetes. Also, the evaluation of the cerebrovascular and cardiovascular disease progression could be performed through the identification of abnormal signs in the retinal vasculature architecture. Given that these alterations affect differently the artery and vein vascularities, a precise characterization of both blood vessel types is also crucial for the diagnosis and treatment of a significant variety of retinal and systemic pathologies. In this work, we present a fully automatic method for the retinal vessel identification and classification in arteries and veins using Optical Coherence Tomography scans. In our analysis, we used a dataset composed by 30 near-infrared reflectance retinography images from different patients, which were used to test and validate the proposed method. In particular, a total of 597 vessel segments were manually labelled by an expert clinician, being used as groundtruth for the validation process. As result, this methodology achieved a satisfactory performance in the complex issue of the retinal vessel tree identification and classification.


Retinal imaging Vascular tree Segmentation Artery/vein classification 



This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.


  1. 1.
    Eichmann, A., Yuan, L., Moyon, D., Lenoble, F., Pardanaud, L., Breant, C.: Vascular development: from precursor cells to branched arterial and venous networks. Int. J. Dev. Biol. 49(2–3), 259–267 (2003)Google Scholar
  2. 2.
    de Moura, J., Novo, J., Charlón, P., Barreira, N., Ortega, M.: Enhanced visualization of the retinal vasculature using depth information in OCT. Med. Biol. Eng. Comput. 55(12), 2209–2225 (2017)CrossRefGoogle Scholar
  3. 3.
    Neubauer, A.S., Luedtke, M., Haritoglou, C., Priglinger, S., Kampik, A.: Retinal vessel analysis reproducibility in assessing cardiovascular disease. Optom. Vis. Sci. 85(4), E247–E254 (2008)CrossRefGoogle Scholar
  4. 4.
    Nguyen, T.T., Wong, T.Y.: Retinal vascular changes and diabetic retinopathy. Curr. Diab. Rep. 9(4), 277–283 (2009)CrossRefGoogle Scholar
  5. 5.
    Klein, R., et al.: Are retinal arteriolar abnormalities related to atherosclerosis?: the atherosclerosis risk in communities study. Arterioscler. Thromb. Vasc. Biol. 20(6), 1644–1650 (2000)CrossRefGoogle Scholar
  6. 6.
    Hubbard, L.D., et al.: Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study1. Ophthalmology 106(12), 2269–2280 (1999)CrossRefGoogle Scholar
  7. 7.
    Bourne, R.R.A., et al.: Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob. Health 5(9), e888–e897 (2017)CrossRefGoogle Scholar
  8. 8.
    MacGillivray, T.J., Trucco, E., Cameron, J.R., Dhillon, B., Houston, J.G., Van Beek, E.J.R.: Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br. J. Radiol. 87(1040), 20130832 (2014)CrossRefGoogle Scholar
  9. 9.
    Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E.Y.K., Laude, A.: Computer-aided diagnosis of diabetic retinopathy: a review. Comput. Biol. Med. 43(12), 2136–2155 (2013)CrossRefGoogle Scholar
  10. 10.
    Novo, J., et al.: Hydra: a web-based system for cardiovascular analysis, diagnosis and treatment. Comput. Methods Programs Biomed. 139, 61–81 (2017)CrossRefGoogle Scholar
  11. 11.
    Samagaio, G., Estévez, A., de Moura, J., Novo, J., Isabel Fernandez, M., Ortega, M.: Automatic macular Edema identification and characterization using OCT images. Comput. Methods Programs Biomed. 163, 47–63 (2018)CrossRefGoogle Scholar
  12. 12.
    Liu, D.T., Xu, X.W.: A review of web-based product data management systems. Comput. Ind. 44(3), 251–262 (2001)CrossRefGoogle Scholar
  13. 13.
    Kalev-Landoy, M., Day, A.C., Cordeiro, M.F., Migdal, C.: Optical coherence tomography in anterior segment imaging. Acta Ophthalmol. 85(4), 427–430 (2007)CrossRefGoogle Scholar
  14. 14.
    Michelson, A.A., Morley, E.W.: On the relative motion of the earth and of the luminiferous ether. Sidereal Messenger 6, 306–310 (1887)zbMATHGoogle Scholar
  15. 15.
    Joshi, V.S., Reinhardt, J.M., Garvin, M.K., Abramoff, M.D.: Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks. PloS One 9(2), e88061 (2014)CrossRefGoogle Scholar
  16. 16.
    Dashtbozorg, B., Mendonça, A.M., Campilho, A.: An automatic graph-based approach for artery/vein classification in retinal images. IEEE Trans. Image Process. 23(3), 1073–1083 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yang, Y., Bu, W., Wang, K., Zheng, Y., Wu, X.: Automated artery-vein classification in fundus color images. In: Che, W., et al. (eds.) ICYCSEE 2016. CCIS, vol. 623, pp. 228–237. Springer, Singapore (2016). Scholar
  18. 18.
    Kondermann, C., Kondermann, D., Yan, M.: Blood vessel classification into arteries and veins in retinal images. In: Medical Imaging 2007: Image Processing, vol. 6512, pp. 651247 (2007)Google Scholar
  19. 19.
    Relan, D., MacGillivray, T., Ballerini, L., Trucco, E.: Retinal vessel classification: sorting arteries and veins. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7396–7399 (2013)Google Scholar
  20. 20.
    Vázquez, S.G., et al.: Improving retinal artery and vein classification by means of a minimal path approach. Mach. Vis. Appl. 24(5), 919–930 (2013)CrossRefGoogle Scholar
  21. 21.
    Welikala, R.A., et al.: Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort. Comput. Biol. Med. 90, 23–32 (2017)CrossRefGoogle Scholar
  22. 22.
    Girard, F., Cheriet, F.: Artery/vein classification in fundus images using CNN and likelihood score propagation. In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 720–724 (2017)Google Scholar
  23. 23.
    Huang, F., Dashtbozorg, B., ter Haar Romeny, B.M.: Artery/vein classification using reflection features in retina fundus images. Mach. Vis. Appl. 29(1), 23–34 (2018)CrossRefGoogle Scholar
  24. 24.
    Zou, B.-J., Chen, Y., Zhu, C.-Z., Chen, Z.-L., Zhang, Z.-Q.: Supervised vessels classification based on feature selection. J. Comput. Sci. Technol. 32(6), 1222–1230 (2017)CrossRefGoogle Scholar
  25. 25.
    de Moura, J., Novo, J., Ortega, M., Barreira, N., Charlón, P.: Artery/vein classification of blood vessel tree in retinal imaging. In: VISIGRAPP (4: VISAPP), pp. 371–377 (2017)Google Scholar
  26. 26.
    Calvo, D., Ortega, M., Penedo, M.G., Rouco, J.: Automatic detection and characterisation of retinal vessel tree bifurcations and crossovers in eye fundus images. Comput. Methods Programs Biomed. 103(1), 28–38 (2011)CrossRefGoogle Scholar
  27. 27.
    Caderno, I., Penedo, M., Barreira, N., Mariño, C., González, F.: Precise detection and measurement of the retina vascular tree. Pattern Recog. Image Anal. 15(2), 523 (2005)Google Scholar
  28. 28.
    Blanco, M., Penedo, M.G., Barreira, N., Penas, M., Carreira, M.J.: Localization and extraction of the optic disc using the fuzzy circular hough transform. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 712–721. Springer, Heidelberg (2006). Scholar
  29. 29.
    Kittler, J.: On the accuracy of the sobel edge detector. Image Vis. Comput. 1(1), 37–42 (1983)CrossRefGoogle Scholar
  30. 30.
    Philip, K.P., Dove, E.L., McPherson, D.D., Gotteiner, N.L., Stanford, W., Chandran, K.B.: The fuzzy Hough transform-feature extraction in medical images. IEEE Trans. Med. Imaging 13(2), 235–240 (1994)CrossRefGoogle Scholar
  31. 31.
    Grisan, E., Ruggeri, A.: A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2003, vol. 1, pp. 890–893 (2003)Google Scholar
  32. 32.
    MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 281–297 (1967)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joaquim de Moura
    • 1
    • 2
    Email author
  • Jorge Novo
    • 1
    • 2
  • Marcos Ortega
    • 1
    • 2
  • Noelia Barreira
    • 1
    • 2
  • Pablo Charlón
    • 3
  1. 1.Department of Computer ScienceUniversity of A CoruñaA CoruñaSpain
  2. 2.CITIC - Research Center of Information and Communication TechnologiesUniversity of A CoruñaA CoruñaSpain
  3. 3.Instituto Oftalmológico Victoria de RojasA CoruñaSpain

Personalised recommendations