Nature-Inspired Optimizers pp 47-67 | Cite as
Dragonfly Algorithm: Theory, Literature Review, and Application in Feature Selection
Abstract
In this chapter, a wrapper-based feature selection algorithm is designed and substantiated based on the binary variant of Dragonfly Algorithm (BDA). DA is a successful, well-established metaheuristic that revealed superior efficacy in dealing with various optimization problems including feature selection. In this chapter we are going first present the inspirations and methamatical modeds of DA in details. Then, the performance of this algorithm is tested on a special type of datasets that contain a huge number of features with low number of samples. This type of datasets makes the optimization process harder, because of the large search space, and the lack of adequate samples to train the model. The experimental results showed the ability of DA to deal with this type of datasets better than other optimizers in the literature. Moreover, an extensive literature review for the DA is provided in this chapter.
References
- 1.Abbassi, R., Abbassi, A., Heidari, A. A., & Mirjalili, S. (2019). An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Conversion and Management, 179, 362–372.Google Scholar
- 2.An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. (2018). Knowledge-Based Systems, 154, 43–67.Google Scholar
- 3.Abdel-Basset, M., Luo, Q., Miao, F., & Zhou, Y. (2017). Solving 0-1 knapsack problems by binary dragonfly algorithm. In International Conference on Intelligent Computing (pp. 491–502). Springer.Google Scholar
- 4.Al-Madi, N., Aljarah, I., & Ludwig, S. (2014). Parallel glowworm swarm optimization clustering algorithm based on mapreduce. In IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2014). IEEE Xplore Digital Library.Google Scholar
- 5.Aljarah, I., AlaM, A. Z., Faris, H., Hassonah, M. A., Mirjalili, S., & Saadeh, H. (2018). Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cognitive Computation, 1–18.Google Scholar
- 6.Aljarah, I., Faris, H., & Mirjalili, S. (2018). Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Computing, 22(1), 1–15.Google Scholar
- 7.Aljarah, I., Faris, H., Mirjalili, S., & Al-Madi, N. (2018). Training radial basis function networks using biogeography-based optimizer. Neural Computing and Applications, 29(7), 529–553.Google Scholar
- 8.Aljarah, I., & Ludwig, S. A. (2012). Parallel particle swarm optimization clustering algorithm based on mapreduce methodology. In Proceedings of the Fourth World Congress on Nature and Biologically Inspired Computing (IEEE NaBIC12). IEEE Explore.Google Scholar
- 9.Aljarah, I., & Ludwig, S. A. (2013). A mapreduce based glowworm swarm optimization approach for multimodal functions. In IEEE Symposium Series on Computational Intelligence, IEEE SSCI 2013. IEEE Xplore.Google Scholar
- 10.Aljarah, I., & Ludwig, S. A. (2013). A new clustering approach based on glowworm swarm optimization. In Proceedings of 2013 IEEE Congress on Evolutionary Computation Conference (IEEE CEC13). Cancun, Mexico: IEEE Xplore.Google Scholar
- 11.Aljarah, I., & Ludwig, S. A. (2013). Towards a scalable intrusion detection system based on parallel PSO clustering using mapreduce. In Proceedings of Genetic and Evolutionary Computation Conference (ACM GECCO13). Amsterdam: ACM.Google Scholar
- 12.Aljarah, I., & Ludwig, S. A. (2016). A scalable mapreduce-enabled glowworm swarm optimization approach for high dimensional multimodal functions. International Journal of Swarm Intelligence Research (IJSIR), 7(1), 32–54.Google Scholar
- 13.Aljarah, I., Mafarja, M., Heidari, A. A., Faris, H., Zhang, Y., & Mirjalili, S. (2018). Asynchronous accelerating multi-leader salp chains for feature selection. Applied Soft Computing, 71, 964–979.Google Scholar
- 14.Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185.MathSciNetGoogle Scholar
- 15.Amroune, M., Bouktir, T., & Musirin, I. (2018). Power system voltage stability assessment using a hybrid approach combining dragonfly optimization algorithm and support vector regression. Arabian Journal for Science and Engineering, 1–14.Google Scholar
- 16.Aminisharifabad, M., Yang, Q., & Wu, X. (2018). A penalized autologistic regression with application for modeling the microstructure of dual-phase high strength steel. Journal of Quality Technology, in-press.Google Scholar
- 17.Babayigit, B. (2018). Synthesis of concentric circular antenna arrays using dragonfly algorithm. International Journal of Electronics, 105(5), 784–793.Google Scholar
- 18.Barham, R., & Aljarah, I. (2017). Link prediction based on whale optimization algorithm. In The International Conference on new Trends in Computing Sciences (ICTCS2017). Amman: Jordan.Google Scholar
- 19.Bhesdadiya, R., Pandya, M. H., Trivedi, I. N., Jangir, N., Jangir, P., & Kumar, A. (2016). Price penalty factors based approach for combined economic emission dispatch problem solution using dragonfly algorithm. In 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS) (pp. 436–441). IEEE.Google Scholar
- 20.Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1–2), 245–271.MathSciNetzbMATHGoogle Scholar
- 21.Branch, S. R., & Rey, S. (2018). Providing a load balancing method based on dragonfly optimization algorithm for resource allocation in cloud computing. International Journal of Networked and Distributed Computing, 6(1), 35–42.Google Scholar
- 22.Chen, Y., Li, L., Xiao, J., Yang, Y., Liang, J., & Li, T. (2018). Particle swarm optimizer with crossover operation. Engineering Applications of Artificial Intelligence, 70, 159–169.Google Scholar
- 23.Chitsaz, H., & Aminisharifabad, M. (2015). Exact learning of rna energy parameters from structure. Journal of Computational Biology, 22(6), 463–473.MathSciNetGoogle Scholar
- 24.Daely, P. T., & Shin, S. Y. (2016). Range based wireless node localization using dragonfly algorithm. In 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 1012–1015). IEEE.Google Scholar
- 25.Dorigo, M., & Birattari, M. (2011). Ant colony optimization. In Encyclopedia of machine learning (pp. 36–39). Springer.Google Scholar
- 26.Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99, vol. 2 (pp. 1470–1477). IEEE.Google Scholar
- 27.Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS’95 (pp. 39–43). IEEE.Google Scholar
- 28.Elhariri, E., El-Bendary, N., & Hassanien, A. E. (2016). Bio-inspired optimization for feature set dimensionality reduction. In 2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) (pp. 184–189). IEEE.Google Scholar
- 29.Faris, H., Aljarah, I., Al-Madi, N., & Mirjalili, S. (2016). Optimizing the learning process of feedforward neural networks using lightning search algorithm. International Journal on Artificial Intelligence Tools, 25(06), 1650033.Google Scholar
- 30.Faris, H., Aljarah, I., & Al-Shboul, B. (2016). A hybrid approach based on particle swarm optimization and random forests for e-mail spam filtering. International Conference on Computational Collective Intelligence (pp. 498–508). Cham: Springer.Google Scholar
- 31.Faris, H., Aljarah, I., & Mirjalili, S. (2017). Evolving radial basis function networks using moth–flame optimizer. In Handbook of Neural Computation (pp. 537–550).Google Scholar
- 32.Faris, H., Aljarah, I., et al. (2015). Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT) (pp. 1–5). IEEE.Google Scholar
- 33.Faris, H., Ala’M, A. Z., Heidari, A. A., Aljarah, I., Mafarja, M., Hassonah, M. A., & Fujita, H. (2019). An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Information Fusion, 48, 67–83.Google Scholar
- 34.Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., AlaM, A. Z., Mirjalili, S., et al. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge-Based Systems, 154, 43–67.Google Scholar
- 35.Fisher, L. (2009). The perfect swarm: The science of complexity in everyday life. Basic Books.Google Scholar
- 36.Ghatasheh, N., Faris, H., Aljarah, I., & Al-Sayyed, R. M. (2015). Optimizing software effort estimation models using firefly algorithm. Journal of Software Engineering and Applications, 8(03), 133.Google Scholar
- 37.Guha, K., Laskar, N., Gogoi, H., Borah, A., Baishnab, K., & Baishya, S. (2017). Novel analytical model for optimizing the pull-in voltage in a flexured mems switch incorporating beam perforation effect. Solid-State Electronics, 137, 85–94.Google Scholar
- 38.Guo, S., Dooner, M., Wang, J., Xu, H., & Lu, G. (2017). Adaptive engine optimisation using NSGA-II and MODA based on a sub-structured artificial neural network. In 2017 23rd International Conference on Automation and Computing (ICAC) (pp. 1–6). IEEE.Google Scholar
- 39.Hamdy, M., Nguyen, A. T., & Hensen, J. L. (2016). A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems. Energy and Buildings, 121, 57–71.Google Scholar
- 40.Hariharan, M., Sindhu, R., Vijean, V., Yazid, H., Nadarajaw, T., Yaacob, S., et al. (2018). Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification. Computer Methods and Programs in Biomedicine, 155, 39–51.Google Scholar
- 41.Heidari, A. A., & Abbaspour, R. A. (2018). Enhanced chaotic grey wolf optimizer for real-world optimization problems: A comparative study. In Handbook of Research on Emergent Applications of Optimization Algorithms (pp. 693–727). IGI Global.Google Scholar
- 42.Heidari, A. A., Abbaspour, R. A., & Jordehi, A. R. (2017). An efficient chaotic water cycle algorithm for optimization tasks. Neural Computing and Applications, 28(1), 57–85.Google Scholar
- 43.Heidari, A. A., Abbaspour, R. A., & Jordehi, A. R. (2017). Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Applied Soft Computing, 57, 657–671.Google Scholar
- 44.Heidari, A. A., & Delavar, M. R. (2016). A modified genetic algorithm for finding fuzzy shortest paths in uncertain networks. In ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B2 (pp. 299–304).Google Scholar
- 45.Heidari, A. A., Faris, H., Aljarah, I., & Mirjalili, S. (2018). An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Computing, 1–18.Google Scholar
- 46.Heidari, A. A., & Pahlavani, P. (2017). An efficient modified grey wolf optimizer with lévy flight for optimization tasks. Applied Soft Computing, 60, 115–134.Google Scholar
- 47.Hema, C., Sankar, S., et al. (2016). Energy efficient cluster based protocol to extend the RFID network lifetime using dragonfly algorithm. In 2016 International Conference on Communication and Signal Processing (ICCSP) (pp. 0530–0534). IEEE.Google Scholar
- 48.Hema, C., Sankar, S., et al. (2017). Performance comparison of dragonfly and firefly algorithm in the RFID network to improve the data transmission. Journal of Theoretical and Applied Information Technology, 95(1), 59.Google Scholar
- 49.Ibrahim, H. T., Mazher, W. J., Ucan, O. N., & Bayat, O. (2018). A grasshopper optimizer approach for feature selection and optimizing SVM parameters utilizing real biomedical data sets. Neural Computing and Applications.Google Scholar
- 50.Jafari, M., & Chaleshtari, M. H. B. (2017). Using dragonfly algorithm for optimization of orthotropic infinite plates with a quasi-triangular cut-out. European Journal of Mechanics-A/Solids, 66, 1–14.MathSciNetzbMATHGoogle Scholar
- 51.Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.MathSciNetzbMATHGoogle Scholar
- 52.Kashef, S., & Nezamabadi-pour, H. (2015). An advanced ACO algorithm for feature subset selection, 147, 271–279.Google Scholar
- 53.Kennedy, J. (2006). Swarm intelligence. In Handbook of Nature-Inspired and Innovative Computing (pp. 187–219). Springer.Google Scholar
- 54.Khadanga, R. K., Padhy, S., Panda, S., & Kumar, A. (2018). Design and analysis of tilt integral derivative controller for frequency control in an islanded microgrid: A novel hybrid dragonfly and pattern search algorithm approach. Arabian Journal for Science and Engineering, 1–12.Google Scholar
- 55.Ks, S. R., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Systems with Applications, 83, 63–78.Google Scholar
- 56.Kumar, C. A., Vimala, R., Britto, K. A., & Devi, S. S. (2018). FDLA: Fractional dragonfly based load balancing algorithm in cluster cloud model. Cluster Computing, 1–14.Google Scholar
- 57.Langley, P., et al. (1994). Selection of relevant features in machine learning. Proceedings of the AAAI Fall symposium on relevance, 184, 245–271.MathSciNetzbMATHGoogle Scholar
- 58.Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., et al. (2017). An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Computational and Mathematical Methods in Medicine, 2017.Google Scholar
- 59.Li, Y., Li, T., & Liu, H. (2017). Recent advances in feature selection and its applications. Knowledge and Information Systems, 53(3), 551–577.Google Scholar
- 60.Liao, T., & Kuo, R. (2018). Five discrete symbiotic organisms search algorithms for simultaneous optimization of feature subset and neighborhood size of KNN classification models. Applied Soft Computing, 64, 581–595.Google Scholar
- 61.Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining, vol. 454. Springer Science & Business Media.Google Scholar
- 62.Liu, H., Setiono, R., et al. (1996). A probabilistic approach to feature selection-a filter solution. In Thirteenth International Conference on Machine Learning (ICML), vol. 96 (pp. 319–327). Citeseer.Google Scholar
- 63.Mafarja, M., & Abdullah, S. (2011). Modified great deluge for attribute reduction in rough set theory. In 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 3, (pp. 1464–1469). IEEE.Google Scholar
- 64.Mafarja, M., & Abdullah, S. (2013). Investigating memetic algorithm in solving rough set attribute reduction. International Journal of Computer Applications in Technology, 48(3), 195–202.Google Scholar
- 65.Mafarja, M., & Abdullah, S. (2013). Record-to-record travel algorithm for attribute reduction in rough set theory. Journal of Theoretical and Applied Information Technology, 49(2), 507–513.zbMATHGoogle Scholar
- 66.Mafarja, M., & Abdullah, S. (2014). Fuzzy modified great deluge algorithm for attribute reduction. Recent Advances on Soft Computing and Data Mining (pp. 195–203). Cham: Springer.Google Scholar
- 67.Mafarja, M., & Abdullah, S. (2015). A fuzzy record-to-record travel algorithm for solving rough set attribute reduction. International Journal of Systems Science, 46(3), 503–512.zbMATHGoogle Scholar
- 68.Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., & Mirjalili, S. (2018). Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 161, 185–204.Google Scholar
- 69.Mafarja, M., Aljarah, I., Heidari, A. A., Hammouri, A. I., Faris, H., AlaM, A. Z., et al. (2018). Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems, 145, 25–45.Google Scholar
- 70.Mafarja, M., Eleyan, D., Abdullah, S., & Mirjalili, S. (2017). S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem. In Proceedings of the International Conference on Future Networks and Distributed Systems (p. 1). ACM.Google Scholar
- 71.Mafarja, M., Jaber, I., Eleyan, D., Hammouri, A., & Mirjalili, S. (2017). Binary dragonfly algorithm for feature selection. In 2017 International Conference on New Trends in Computing Sciences (ICTCS) (pp. 12–17).Google Scholar
- 72.Mafarja, M., & Mirjalili, S. (2017). Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing.Google Scholar
- 73.Mafarja, M., & Mirjalili, S. (2017). Whale optimization approaches for wrapper feature selection. Applied Soft Computing, 62, 441–453.Google Scholar
- 74.Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.Google Scholar
- 75.Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053–1073.Google Scholar
- 76.Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.Google Scholar
- 77.Mirjalili, S., & Lewis, A. (2013). S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm and Evolutionary Computation, 9, 1–14.Google Scholar
- 78.Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.Google Scholar
- 79.Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.Google Scholar
- 80.Moradi, P., & Gholampour, M. (2016). A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy. Applied Soft Computing, 43, 117–130.Google Scholar
- 81.Pathania, A. K., Mehta, S., & Rza, C. (2016). Economic load dispatch of wind thermal integrated system using dragonfly algorithm. In 2016 7th India International Conference on Power Electronics (IICPE) (pp. 1–6). IEEE.Google Scholar
- 82.Rajamohana, S., & Umamaheswari, K. (2018). Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection. Computers & Electrical Engineering.Google Scholar
- 83.Raman, G., Raman, G., Manickam, C., & Ganesan, S. I. (2016). Dragonfly algorithm based global maximum power point tracker for photovoltaic systems. In Y. Tan, Y. Shi, & B. Niu (Eds.), Advances in Swarm Intelligence (pp. 211–219). Cham: Springer International Publishing.Google Scholar
- 84.Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH Computer Graphics, vol. 21 (pp. 25–34). ACM.Google Scholar
- 85.Salam, M. A., Zawbaa, H. M., Emary, E., Ghany, K. K. A., & Parv, B. (2016). A hybrid dragonfly algorithm with extreme learning machine for prediction. In 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA) (pp. 1–6). IEEE.Google Scholar
- 86.Sambandam, R. K., & Jayaraman, S. (2016). Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital images. Journal of King Saud University-Computer and Information Sciences.Google Scholar
- 87.Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105, 30–47.Google Scholar
- 88.Shilaja, C., & Ravi, K. (2017). Optimal power flow using hybrid DA-APSO algorithm in renewable energy resources. Energy Procedia, 117, 1085–1092.Google Scholar
- 89.Sekhar, A. H., & Devi, A. L. (2016). Analysis of multi tcsc placement in transmission system by using firing angle control model with heuristic algorithms. ARPN Journal of Engineering and Applied Sciences, 11(21), 12743–12755.Google Scholar
- 90.Shukri, S., Faris, H., Aljarah, I., Mirjalili, S., & Abraham, A. (2018). Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer. Engineering Applications of Artificial Intelligence, 72, 54–66.Google Scholar
- 91.Song, J., & Li, S. (2017). Elite opposition learning and exponential function steps-based dragonfly algorithm for global optimization. In 2017 IEEE International Conference on Information and Automation (ICIA) (pp. 1178–1183). IEEE.Google Scholar
- 92.Statnikov, A., Aliferis, C. F., Tsamardinos, I., Hardin, D., & Levy, S. (2004). A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21(5), 631–643.Google Scholar
- 93.Sugave, S. R., Patil, S. H., & Reddy, B. E. (2017). DDF: Diversity dragonfly algorithm for cost-aware test suite minimization approach for software testing. In 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 701–707). IEEE.Google Scholar
- 94.Suresh, V., & Sreejith, S. (2017). Generation dispatch of combined solar thermal systems using dragonfly algorithm. Computing, 99(1), 59–80.MathSciNetzbMATHGoogle Scholar
- 95.Surowiecki, J., Silverman, M. P., et al. (2007). The wisdom of crowds. American Journal of Physics, 75(2), 190–192.Google Scholar
- 96.Tharwat, A., Gabel, T., & Hassanien, A.E. (2017). Classification of toxicity effects of biotransformed hepatic drugs using optimized support vector machine. In A. E. Hassanien, K. Shaalan, T. Gaber, M. F. Tolba (Eds.), Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017 (pp. 161–170). Cham: Springer International Publishing.Google Scholar
- 97.Tharwat, A., Gabel, T., & Hassanien, A.E. (2017). Parameter optimization of support vector machine using dragonfly algorithm. In International Conference on Advanced Intelligent Systems and Informatics (pp. 309–319). Springer.Google Scholar
- 98.Vanishree, J., & Ramesh, V. (2018). Optimization of size and cost of static var compensator using dragonfly algorithm for voltage profile improvement in power transmission systems. International Journal of Renewable Energy Research (IJRER), 8(1), 56–66.Google Scholar
- 99.VeeraManickam, M., Mohanapriya, M., Pandey, B. K., Akhade, S., Kale, S., Patil, R., et al. (2018). Map-reduce framework based cluster architecture for academic students performance prediction using cumulative dragonfly based neural network. Cluster Computing, 1–17.Google Scholar
- 100.Vikram, K. A., Ratnam, C., Lakshmi, V., Kumar, A. S., & Ramakanth, R. (2018). Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations-a case study. In IOP Conference Series: Materials Science and Engineering, vol. 310 (p. 012154). IOP Publishing.Google Scholar
- 101.Wu, J., Zhu, Y., Wang, Z., Song, Z., Liu, X., Wang, W., et al. (2017). A novel ship classification approach for high resolution sar images based on the BDA-KELM classification model. International Journal of Remote Sensing, 38(23), 6457–6476.Google Scholar
- 102.Zorarpacı, E., & Özel, S. A. (2016). A hybrid approach of differential evolution and artificial bee colony for feature selection. Expert Systems with Applications, 62, 91–103.Google Scholar