Advertisement

Sine Cosine Algorithm: Theory, Literature Review, and Application in Designing Bend Photonic Crystal Waveguides

  • Seyed Mohammad Mirjalili
  • Seyedeh Zahra Mirjalili
  • Shahrzad Saremi
  • Seyedali MirjaliliEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 811)

Abstract

This chapter presented the Sine Cosine Algorithm (SCA), which is a recent meta-heuristics using mathematical equations to estimate the global optima of optimization problems. After discussing the mathematical model, a brief literature review is given covering the most recent improvements and applications of this algorithm. The performance of this algorithm is benchmarked on a wide range of test functions showing the flexibility of SCA in solving diverse problems with different characteristics. The chapter also considers finding an optimal design for a bend photonics crystal that shows the merits of this algorithm is solving challenging real-world problems.

References

  1. 1.
    Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760–766). Boston: Springer.Google Scholar
  2. 2.
    Dorigo, M., & Birattari, M. (2011). Ant colony optimization. In Encyclopedia of machine learning (pp. 36–39). Boston: Springer.Google Scholar
  3. 3.
    Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053–1073.CrossRefGoogle Scholar
  5. 5.
    Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78–84.CrossRefGoogle Scholar
  6. 6.
    Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRefGoogle Scholar
  7. 7.
    Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.CrossRefGoogle Scholar
  8. 8.
    Chitsaz, H., & Aminisharifabad, M. (2015). Exact learning of rna energy parameters from structure. Journal of Computational Biology, 22(6), 463–473.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Aminisharifabad, M., Yang, Q., & Wu, X. (2018). A penalized autologistic regression with application for modeling the microstructure of dual-phase high strength steel. Journal of Quality Technology (in-press).Google Scholar
  10. 10.
    Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.CrossRefGoogle Scholar
  11. 11.
    Neri, F., & Tirronen, V. (2010). Recent advances in differential evolution: A survey and experimental analysis. Artificial Intelligence Review, 33(1–2), 61–106.CrossRefGoogle Scholar
  12. 12.
    Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–713.CrossRefGoogle Scholar
  13. 13.
    Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.CrossRefGoogle Scholar
  14. 14.
    Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: Charged system search. Acta Mechanica, 213(3–4), 267–289.CrossRefGoogle Scholar
  15. 15.
    Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray optimization. Computers & Structures, 112, 283–294.CrossRefGoogle Scholar
  16. 16.
    Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513.CrossRefGoogle Scholar
  17. 17.
    Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In IEEE Congress on Evolutionary Computation, 2007, CEC 2007 (pp. 4661–4667). IEEE.Google Scholar
  18. 18.
    Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teachinglearning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.CrossRefGoogle Scholar
  19. 19.
    Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.CrossRefGoogle Scholar
  20. 20.
    Tawhid, M. A., & Savsani, V. (2017). Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Computing and Applications, 1–15.Google Scholar
  21. 21.
    Hafez, A. I., Zawbaa, H. M., Emary, E., & Hassanien, A. E. (2016). Sine cosine optimization algorithm for feature selection. In International Symposium on Innovations in Intelligent Systems and Applications (INISTA), 2016 (pp. 1–5). IEEE.Google Scholar
  22. 22.
    Reddy, K. S., Panwar, L. K., Panigrahi, B. K., & Kumar, R. (2018). A new binary variant of sinecosine algorithm: Development and application to solve profit-based unit commitment problem. Arabian Journal for Science and Engineering, 43(8), 4041–4056.CrossRefGoogle Scholar
  23. 23.
    Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.CrossRefGoogle Scholar
  24. 24.
    Elaziz, M. A., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.CrossRefGoogle Scholar
  25. 25.
    Bairathi, D., & Gopalani, D. (2017). Opposition-based sine cosine algorithm (OSCA) for training feed-forward neural networks. In 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 2017 (pp. 438–444). IEEE.Google Scholar
  26. 26.
    Li, N., Li, G., & Deng, Z. (2017). An improved sine cosine algorithm based on levy flights. In Ninth International Conference on Digital Image Processing (ICDIP 2017) (Vol. 10420, p. 104204R). International Society for Optics and Photonics.Google Scholar
  27. 27.
    Qu, C., Zeng, Z., Dai, J., Yi, Z., & He, W. (2018). A modified sine-cosine algorithm based on neighborhood search and greedy levy mutation. Computational Intelligence and Neuroscience.Google Scholar
  28. 28.
    Zou, Q., Li, A., He, X., & Wang, X. (2018). Optimal operation of cascade hydropower stations based on chaos cultural sine cosine algorithm. In IOP Conference Series: Materials Science and Engineering (Vol. 366, No. 1, p. 012005). IOP Publishing.Google Scholar
  29. 29.
    Meshkat, M., & Parhizgar, M. (2017). A novel weighted update position mechanism to improve the performance of sine cosine algorithm. In 5th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), 2017 (pp. 166–171). IEEE.Google Scholar
  30. 30.
    Li, S., Fang, H., & Liu, X. (2018). Parameter optimization of support vector regression based on sine cosine algorithm. Expert Systems with Applications, 91, 63–77.CrossRefGoogle Scholar
  31. 31.
    Nayak, D. R., Dash, R., Majhi, B., & Wang, S. (2018). Combining extreme learning machine with modified sine cosine algorithm for detection of pathological brain. Computers & Electrical Engineering, 68, 366–380.CrossRefGoogle Scholar
  32. 32.
    Sahlol, A. T., Ewees, A. A., Hemdan, A. M., & Hassanien, A. E. (2016). Training feedforward neural networks using Sine-Cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite. In 12th International Computer Engineering Conference (ICENCO), 2016 (pp. 35–40). IEEE.Google Scholar
  33. 33.
    Hamdan, S., Binkhatim, S., Jarndal, A., & Alsyouf, I. (2017). On the performance of artificial neural network with sine-cosine algorithm in forecasting electricity load demand. In International Conference on Electrical and Computing Technologies and Applications (ICECTA), 2017 (pp. 1–5). IEEE.Google Scholar
  34. 34.
    Rahimi, H. (2019). Considering factors affecting the prediction of time series by improving Sine-Cosine algorithm for selecting the best samples in neural network multiple training model. In Fundamental research in electrical engineering (pp. 307–320). Singapore: Springer.Google Scholar
  35. 35.
    Chen, K., Zhou, F., Yin, L., Wang, S., Wang, Y., & Wan, F. (2018). A hybrid particle swarm optimizer with sine cosine acceleration coefficients. Information Sciences, 422, 218–241.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Issa, M., Hassanien, A. E., Oliva, D., Helmi, A., Ziedan, I., & Alzohairy, A. (2018). ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Systems with Applications, 99, 56–70.CrossRefGoogle Scholar
  37. 37.
    Bureerat, S., & Pholdee, N. (2017). Adaptive sine cosine algorithm integrated with differential evolution for structural damage detection. In International Conference on Computational Science and Its Applications (pp. 71–86). Cham: Springer.CrossRefGoogle Scholar
  38. 38.
    Elaziz, M. E. A., Ewees, A. A., Oliva, D., Duan, P., & Xiong, S. (2017). A hybrid method of sine cosine algorithm and differential evolution for feature selection. In International Conference on Neural Information Processing (pp. 145–155). Cham: Springer.Google Scholar
  39. 39.
    Nenavath, H., & Jatoth, R. K. (2018). Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Applied Soft Computing, 62, 1019–1043.CrossRefGoogle Scholar
  40. 40.
    Zhou, C., Chen, L., Chen, Z., Li, X., & Dai, G. (2017). A sine cosine mutation based differential evolution algorithm for solving node location problem. International Journal of Wireless and Mobile Computing, 13(3), 253–259.CrossRefGoogle Scholar
  41. 41.
    Oliva, D., Hinojosa, S., Elaziz, M. A., & Ortega-Snchez, N. (2018). Context based image segmentation using antlion optimization and sine cosine algorithm. Multimedia Tools and Applications, 1–37.Google Scholar
  42. 42.
    Khalilpourazari, S., & Khalilpourazary, S. (2018). SCWOA: An efficient hybrid algorithm for parameter optimization of multi-pass milling process. Journal of Industrial and Production Engineering, 35(3), 135–147.CrossRefGoogle Scholar
  43. 43.
    Singh, N., & Singh, S. B. (2017). A novel hybrid GWO-SCA approach for optimization problems. Engineering Science and Technology, an International Journal, 20(6), 1586–1601.CrossRefGoogle Scholar
  44. 44.
    Zhang, J., Zhou, Y., & Luo, Q. (2018). An improved sine cosine water wave optimization algorithm for global optimization. Journal of Intelligent & Fuzzy Systems, 34(4), 2129–2141.CrossRefGoogle Scholar
  45. 45.
    Rizk-Allah, R. M. (2018). Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. Journal of Computational Design and Engineering, 5(2), 249–273.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Pasandideh, S. H. R., & Khalilpourazari, S. (2018). Sine cosine crow search algorithm: A powerful hybrid meta heuristic for global optimization. arXiv:1801.08485.
  47. 47.
    Nenavath, H., & Jatoth, R. K. Hybrid SCATLBO: A novel optimization algorithm for global optimization and visual tracking. Neural Computing and Applications, 1–30.Google Scholar
  48. 48.
    Banerjee, A., & Nabi, M. (2017). Re-entry trajectory optimization for space shuttle using Sine-Cosine algorithm. In 8th International Conference on Recent Advances in Space Technologies (RAST), 2017 (pp. 73–77). IEEE.Google Scholar
  49. 49.
    Majhi, S. K. (2018). An efficient feed foreword network model with sine cosine algorithm for breast cancer classification. International Journal of System Dynamics Applications (IJSDA), 7(2), 1–14.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Raut, U., & Mishra, S. Power distribution network reconfiguration using an improved sine cosine algorithm based meta-heuristic search.Google Scholar
  51. 51.
    Ghosh, A., & Mukherjee, V. (2017). Temperature dependent optimal power flow. In 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy). IEEE.Google Scholar
  52. 52.
    Issa, M., Hassanien, A. E., Helmi, A., Ziedan, I., & Alzohairy, A. (2018). Pairwise global sequence alignment using Sine-Cosine optimization algorithm. In International Conference on Advanced Machine Learning Technologies and Applications (pp. 102–111). Cham: Springer.CrossRefGoogle Scholar
  53. 53.
    SeyedShenava, S., & Asefi, S. Tuning controller parameters for AGC of multi-source power system using SCA algorithm. Delta, 2(B2), B2.Google Scholar
  54. 54.
    Rajesh, K. S., & Dash, S. S. (2018). Load frequency control of autonomous power system using adaptive fuzzy based PID controller optimized on improved sine cosine algorithm. Journal of Ambient Intelligence and Humanized Computing, 1–13.Google Scholar
  55. 55.
    Khezri, R., Oshnoei, A., Tarafdar Hagh, M., & Muyeen, S. M. (2018). Coordination of heat pumps, electric vehicles and AGC for efficient LFC in a smart hybrid power system via SCA-based optimized FOPID controllers. Energies, 11(2), 420.CrossRefGoogle Scholar
  56. 56.
    Mostafa, E., Abdel-Nasser, M., & Mahmoud, K. (2017). Performance evaluation of metaheuristic optimization methods with mutation operators for combined economic and emission dispatch. In 2017 Nineteenth International Middle East Power Systems Conference (MEPCON) (pp. 1004–1009). IEEE.Google Scholar
  57. 57.
    Singh, P. P., Bains, R., Singh, G., Kapila, N., & Kamboj, V. K. (2017). Comparative analysis on economic load dispatch problem optimization using moth flame optimization and sine cosine algorithms. No. 2, 65–75.Google Scholar
  58. 58.
    Majeed, M. M., & Rao, P. S. (2017). Optimization of CMOS analog circuits using sine cosine algorithm. In 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2017 (pp. 1–6). IEEE.Google Scholar
  59. 59.
    Ramanaiah, M. L., & Reddy, M. D. (2017). Sine cosine algorithm for loss reduction in distribution system with unified power quality conditioner. i-Manager’s Journal on Power Systems Engineering, 5(3), 10.Google Scholar
  60. 60.
    Dhundhara, S., & Verma, Y. P. (2018). Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system. Energy, 147, 1108–1128.CrossRefGoogle Scholar
  61. 61.
    Singh, V. P. (2017). Sine cosine algorithm based reduction of higher order continuous systems. In 2017 International Conference on Intelligent Sustainable Systems (ICISS) (pp. 649–653). IEEE.Google Scholar
  62. 62.
    Tasnin, W., & Saikia, L. C. (2017). Maiden application of an sinecosine algorithm optimised FO cascade controller in automatic generation control of multi-area thermal system incorporating dish-Stirling solar and geothermal power plants. IET Renewable Power Generation, 12(5), 585–597.CrossRefGoogle Scholar
  63. 63.
    Rout, B., PATI, B. B., & Panda, S. (2018). Modified SCA algorithm for SSSC damping controller design in power system. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 16(1).Google Scholar
  64. 64.
    Sahu, N., & Londhe, N. D. (2017). Selective harmonic elimination in five level inverter using sine cosine algorithm. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (pp. 385–388). IEEE.Google Scholar
  65. 65.
    Das, S., Bhattacharya, A., & Chakraborty, A. K. (2017). Solution of short-term hydrothermal scheduling using sine cosine algorithm. Soft Computing, 1–19.Google Scholar
  66. 66.
    Ismael, S. M., Aleem, S. H. A., & Abdelaziz, A. Y. (2017). Optimal selection of conductors in Egyptian radial distribution systems using sine-cosine optimization algorithm. In Nineteenth International Middle East Power Systems Conference (MEPCON), 2017 (pp. 103–107). IEEE.Google Scholar
  67. 67.
    Kumar, V., & Kumar, D. (2017). Data clustering using sine cosine algorithm: Data clustering using SCA. In Handbook of research on machine learning innovations and trends (pp. 715–726). IGI Global.Google Scholar
  68. 68.
    Mahdad, B., & Srairi, K. (2018). A new interactive sine cosine algorithm for loading margin stability improvement under contingency. Electrical Engineering, 100(2), 913–933.CrossRefGoogle Scholar
  69. 69.
    Sindhu, R., Ngadiran, R., Yacob, Y. M., Zahri, N. A. H., & Hariharan, M. (2017). Sinecosine algorithm for feature selection with elitism strategy and new updating mechanism. Neural Computing and Applications, 28(10), 2947–2958.CrossRefGoogle Scholar
  70. 70.
    Yldz, B. S., & Yldz, A. R. (2018). Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Materials Testing, 60(3), 311–315.CrossRefGoogle Scholar
  71. 71.
    Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017). Single sensor-based MPPT of partially shaded PV system for battery charging by using cauchy and gaussian sine cosine optimization. IEEE Transactions on Energy Conversion, 32(3), 983–992.CrossRefGoogle Scholar
  72. 72.
    Elfattah, M. A., Abuelenin, S., Hassanien, A. E., & Pan, J. S. (2016). Handwritten arabic manuscript image binarization using sine cosine optimization algorithm. In International Conference on Genetic and Evolutionary Computing (pp. 273–280). Cham: Springer.Google Scholar
  73. 73.
    Turgut, O. E. (2017). Thermal and economical optimization of a shell and tube evaporator using hybrid backtracking search sine cosine algorithm. Arabian Journal for Science and Engineering, 42(5), 2105–2123.CrossRefGoogle Scholar
  74. 74.
    Wang, J., Yang, W., Du, P., & Niu, T. (2018). A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Energy Conversion and Management, 163, 134–150.CrossRefGoogle Scholar
  75. 75.
    Jiang, L., Wu, H., Jia, W., & Li, X. (2013). Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Optik-International Journal for Light and Electron Optics, 124(14), 1721–1725.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Seyed Mohammad Mirjalili
    • 1
  • Seyedeh Zahra Mirjalili
    • 2
  • Shahrzad Saremi
    • 3
  • Seyedali Mirjalili
    • 3
    Email author
  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada
  2. 2.School of Electrical Engineering and ComputingUniversity of NewcastleCallaghanAustralia
  3. 3.Institute for Integrated and Intelligent SystemsGriffith UniversityBrisbaneAustralia

Personalised recommendations