Exact Optimal Solution to Nonseparable Concave Quadratic Integer Programming Problems
Conference paper
First Online:
Abstract
Nonseparable quadratic integer programming problems have extensive applications in real world and have received considerable attentions. In this paper, a new exact algorithm is presented for nonseparable concave quadratic integer programming problems. This algorithm is of a branch and bound frame, where the lower bound is obtained by solving a quadratic convex programming problem and the branches are partitioned via a special domain cut technique by which the optimality gap is reduced gradually. The optimal solution to the primal problem can be found in a finite number of iterations. Numerical results are also reported to illustrate the efficiency of our algorithm.
Keywords
Nonseparable concave integer programming problems Linear and contour cut Domain partition Quadratic convex programmingMSC (2010):
90C10 90C26 90C30References
- 1.Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (1993)zbMATHGoogle Scholar
- 2.Beck, A., Teboulle, M.: Global optimality conditions for quadratic optimization problems with binary constraints. SIAM J. Optimiz. 11, 179–188 (2000)MathSciNetCrossRefGoogle Scholar
- 3.Benson, H.P., Erengue, S.S.: An algorithm for concave integer minimization over a polyhedron. Nav. Res. Log. 37, 515–525 (1990)MathSciNetCrossRefGoogle Scholar
- 4.Bretthauer, K.M., Shetty, B.: The nonlinear resource allocation problem. Oper. Res. 43, 670–683 (1995)MathSciNetCrossRefGoogle Scholar
- 5.Bretthauer, K.M., Shetty, B.: The nonlinear knapsack problem-algorithms and applications. Eur. J. Oper. Res. 138, 459–472 (2002a)MathSciNetCrossRefGoogle Scholar
- 6.Bretthauer, K.M., Shetty, B.: A pegging algorithm for the nonlinear resource allocation problem. Comput. Oper. Res. 29, 505–527 (2002b)MathSciNetCrossRefGoogle Scholar
- 7.Cabot, A.V., Erengue, S.S.: A branch and bound algorithm for solving a class of nonlinear integer programming problems. Nav. Res. Log. 33, 559–567 (1986)MathSciNetCrossRefGoogle Scholar
- 8.Guignard, M., Kim, S.: Lagrangian decomposition: a model yielding stronger lagrangian relaxation bounds. Math. Program. 33, 262–273 (1987)Google Scholar
- 9.Hochbaum, D.: A nonlinear knapsack problem. Oper. Res. Lett. 17, 103–110 (1995)MathSciNetCrossRefGoogle Scholar
- 10.Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Heidelberg (1993)CrossRefGoogle Scholar
- 11.Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. MIT Press, Cambridge, Mass (1988)Google Scholar
- 12.Kodialam, M.S., Luss, H.: Algorithm for separable nonlinear resource allocation problems. Oper. Res. 46, 272–284 (1998)MathSciNetCrossRefGoogle Scholar
- 13.Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0–1 programs. SIAM J. Optimiz. 12, 756–769 (2002)MathSciNetCrossRefGoogle Scholar
- 14.Li, D., Sun, X.L., Wang, F.L.: Convergent Lagrangian and contour cut method for nonlinear integer programming with a quadratic objective function. SIAM J. Optimiz. 17, 372–400 (2006)MathSciNetCrossRefGoogle Scholar
- 15.Li, D., Sun, X.L., Wang, J., McKinnon, K.: Convergent Lagrangian and domain cut method for nonlinear knapsack problems. Comput. Optim. Appl. 42, 67–104 (2009)MathSciNetCrossRefGoogle Scholar
- 16.Marsten, R.E., Morin, T.L.: A hybrid approach to discrete mathematical programming. Math. Program. 14, 21–40 (1978)MathSciNetCrossRefGoogle Scholar
- 17.Mathur, K., Salkin, H.M., Morito, S.: A branch and search algorithm for a class of nonlinear knapsack problems. Oper. Res. Lett. 2, 55–60 (1983)MathSciNetCrossRefGoogle Scholar
- 18.Michelon, P., Maculan, N.: Lagrangian decomposition for integer nonlinear programming with linear constraints. Math. Program. 52, 303–313 (1991)CrossRefGoogle Scholar
- 19.Michelon, P., Maculan, N.: Lagrangian methods for 0–1 quadratic programming. Discre. Appl. Math. 42, 257–269 (1993)CrossRefGoogle Scholar
- 20.Pardalos, P.M., Rosen, J.B.: Reduction of nonlinear integer separable programming problems. Int. J. Comput. Math. 24, 55–64 (1988)CrossRefGoogle Scholar
- 21.Sun, X.L., Li, D.: Optimality condition and branch and bound algorithm for constrained redundancy optimization in series systems. Optim. Eng. 3, 53–65 (2002)MathSciNetCrossRefGoogle Scholar
- 22.Sun, X.L., Wang, F.L., Li, D.: Exact algorithm for concave knapsack problems: Linear underestination and partition method. J. Global Optim. 33, 15–30 (2005)MathSciNetCrossRefGoogle Scholar
- 23.Wang, F.L., Sun, X.L.: A Lagrangian decomposition and domain cut algorithm for nonseparable convex knapsack problems. Oper. Res. Trans. 8, 45–53 (2004)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019