Advertisement

BEM Based Numerical Approach for the Study of the Dispersed Systems Rheological Properties

  • Yulia A. Pityuk
  • Olga A. AbramovaEmail author
  • Nazgul B. Fatkullina
  • Aiguzel Z. Bulatova
Conference paper
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 199)

Abstract

The relevance of adequate modeling of disperse systems in the microscale is driven by the need of solution of applied problems appearing in the oil and gas industry, micro-manufacturing, environmental, bio-, medical-, nano- and other technologies. High-efficient computational techniques for modeling of large volume of the dispersed system is required for more accurately determine the rheological parameters of such systems, based on the calculated properties of its components. The present work is dedicated to the study of the dispersed system features in a shear flow at low Reynolds numbers. The computational approach is based on the boundary element method accelerated using the fast multipole method on heterogeneous computing architectures. The results of the simulations and details of the method are discussed. Furthermore, the standard viscometric functions that characterize the behavior of an emulsion or bubbly liquid, when this is regarded as a homogeneous medium, were calculated and studied.

Keywords

Dispersed systems Shear flow Rheology Boundary element method Fast multipole method Graphics processors 

Notes

Aknowlegements

The reported study was funded by Russian Science Foundation according to the research project No. 18-71-00068), FMM library is provided by Fantalgo, LLC (Maryland, USA)

References

  1. 1.
    Abramova, O.A., Pityuk, Y.A., Gumerov, N.A., Akhatov, I.S.: High performance BEM simulation of 3D emulsion flow. Commun. Comput. Inf. Sci. (CCIS) 753, 317–330 (2017).  https://doi.org/10.1007/978-3-319-67035-5_23CrossRefGoogle Scholar
  2. 2.
    Abramova, O.A., Itkulova, Yu.A., Gumerov, N.A.: FMM/GPU accelerated BEM simulations of emulsion flows in microchannels. In: Contribution paper of ASME 2013 IMECE (2013).  https://doi.org/10.1115/imece2013-63193
  3. 3.
    Chang, C., Powell, R.L.: Hydrodynamic transport properties of concentrated suspensions. AIChE J. 48(11), 2475–2480 (2002)CrossRefGoogle Scholar
  4. 4.
    Cunha, F.R., Almeida, M.H.P., Loewenberg, M.: Direct numerical simulations of emulsion flows. J. Braz. Soc. Mech. Sci. Eng. 25(1), 2475–2480 (2003).  https://doi.org/10.1590/S1678-58782003000100005CrossRefGoogle Scholar
  5. 5.
    Fatkhullina, Y.I., Musin, A.A., Kovaleva, L.A., Akhatov, I.S.: Mathematical modeling of a water-in-oil emulsion droplet behavior under the microwave impact. J. Phys.: Conf. Ser. 574(1), 012110 (2015)Google Scholar
  6. 6.
    Farutin, A., Biben, T., Misbah, C.: 3D numerical simulations of vesicle and inextensible capsule dynamics. J. Comput. Phys. 275, 539–568 (2014).  https://doi.org/10.1016/j.jcp.2014.07.008MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gupta, A., Sbragaglia, M., Scagliarini, A.: Hybrid lattice Boltzmann/finite difference simulations of viscoelastic multicomponent flows in confined geometries. J. Comput. Phys. 291, 177–197 (2015).  https://doi.org/10.1016/j.jcp.2015.03.006MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Itkulova (Pityuk) Yu, A., Abramova, O.A., Gumerov, N.A., Akhatov, I.S.: Boundary element simulations of free and forced bubble oscillations in potential flow. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, vol. 7, IMECE 2014-36972 (2014).  https://doi.org/10.1115/IMECE2014-36972
  9. 9.
    Kennedy, M.R., Pozrikidis, C., Skalak, R.: Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Comput. Fluids 23(2), 251–278 (1994).  https://doi.org/10.1016/0045-7930(94)90040-xCrossRefzbMATHGoogle Scholar
  10. 10.
    Keir, G., Jegatheesan, V.: A review of computational fluid dynamics applications in pressure-driven membrane filtration. Rev. Environ. Sci. Biotechnol. 13, 183–201 (2014).  https://doi.org/10.1007/s11157-013-9327-xCrossRefGoogle Scholar
  11. 11.
    Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow, p. 259. Cambridge University Press, Cambridge (1992).  https://doi.org/10.1017/cbo9780511624124CrossRefzbMATHGoogle Scholar
  12. 12.
    Pozrikidis, C.: Motion of a spherical liquid drop in simple shear flow next to an infinite plane wall or fluid interface. J. Eng. Math. 107, 111–132 (2017).  https://doi.org/10.1007/s10665-017-9927-5MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Stickel, J., Powell, R.L.: Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid. Mech. 37, 129–149 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zinchenko, A.Z., Davis, R.H.: A multipole-accelerated algorithm for close interaction of slightly deformable drops. J. Comp. Phys. 207, 695–735 (2005).  https://doi.org/10.1016/j.jcp.2005.01.026CrossRefzbMATHGoogle Scholar
  15. 15.
    Zinchenko, A.Z., Davis, R.H.: Shear flow of higly concentrated emulsions of deformable drops by numerical simulations. J. Comp. Phys. 455, 21–62 (2000).  https://doi.org/10.1017/S0022112001007042CrossRefzbMATHGoogle Scholar
  16. 16.
    Zinchenko, A.Z., Davis, R.H.: General rheology of highly concentrated emulsions with insoluble surfactant. J. Fluid Mech. 816, 661–704 (2017).  https://doi.org/10.1017/jfm.2017.91MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yulia A. Pityuk
    • 1
  • Olga A. Abramova
    • 1
    Email author
  • Nazgul B. Fatkullina
    • 1
  • Aiguzel Z. Bulatova
    • 1
  1. 1.Center for Micro and Nanoscale Dynamics of Dispersed SystemsBashkir State UniversityUfaRussia

Personalised recommendations