Improved Quality Video Transmission by Optical Channel from Underwater Mobile Robots

  • Sergey Kirillov
  • Vladimir Dmitriev
  • Leonid Aronov
  • Petr SkonnikovEmail author
  • Andrew Baukov
Conference paper
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 199)


Search for minerals in the continental shelf of Russia, monitoring gas and oil pipelines, inspecting the underwater parts of the vessel, solving the problem of navigational uncertainty under water is impossible without the use of underwater mobile robots that allow transmitting control data, telemetric information and video images of improved quality in real time. In the interests of solving these tasks, a prototype of an underwater optical channel for transmitting information and control data, as well as enhanced submarine images with a speed of 10 … 100 Mbit/s, has been developed and the requirements for its technical parameters have been formulated. The limiting distances for transmitting information in different types of waters for an underwater transmission system with a budget of 45 dB have been determined.


Optical channel Video quality improvement Small size remote operated submersibles Sea water Absorption Scattering 


  1. 1.
    Francois, R.E., et al.: Unmanned arctic research submersible (UARS) system development and test report. Technical report, no. APL-UW 7219. Applied Physics Laboratory, University of Washington (1972)Google Scholar
  2. 2.
    Baulo, E.N., Bukin, O.A., Doroshenko, I.M., Major, A.Y., Salyuk, P.A.: Teleupravlyaemyj podvodnyj kompleks dlya issledovaniya bioopticheskih parametrov morskoj vody [Remote-controlled underwater complex for the study of bio-optical parameters of sea water]. Optika atmosfery i okeana 27(3): 3–8 (2014). (in Russian)Google Scholar
  3. 3.
    Shlomi, A.: Underwater optical wireless communication network. J. Opt. Eng. 59, 110 (2010)Google Scholar
  4. 4.
    Doronin, Y.P.: Fizika okeana [Ocean Physics]. Gidrometeoizdat, St. Petersburg (1978). (in Russian)Google Scholar
  5. 5.
    William, M.I., James, B.P.: Infrared optical properties of water and ice spheres. Icarus 8, 324–360 (1968)CrossRefGoogle Scholar
  6. 6.
    Pratt, V.: Lazernye sistemy svyazi [Laser Communication Systems]. Svyaz, Moscow (1972). (in Russian)Google Scholar
  7. 7.
    Shifrin, K.S.: Vvedenie v optiku okeana [Introduction to Ocean Optics]. Gidrometeoizdat, St. Peterspurg (1983). (in Russian)Google Scholar
  8. 8.
    Hanson, F., Stojan, R.: High bandwidth underwater optical communication. Appl. Opt. 47(10), 90 (2008)Google Scholar
  9. 9.
    Snow, J.B., Flatley, J.P., Freeman, D.E., Landry, M.A., Lindstrom, C.E., Longacre, J.E., Shwartz, J.A.: Underwater propagation of high data rate laser communication pulses. In: SPIE, vol. 1750, pp. 419–427 (1992)Google Scholar
  10. 10.
    Bales, J.W., Chryssostomidis, C.: High bandwidth, low-power, shot range optical communications under-water. In: International Symposium on Unmanned Untethered Submersible Technology, vol. 9, pp. 406–415 (1995)Google Scholar
  11. 11.
    Chancey, M.A.: Short range underwater communication links. Master thesis. North Carolina state University (2005)Google Scholar
  12. 12.
    Dmitriev, V.T., Kirillov, S.N., Kuznecov, S.N., Locmanov, A.A., Polyakov, S.Y.: Apparatura podvodnoj opticheskoj svyazi [Submarine Optical Communications Equipment]. Patent holder: «Ryazan state radio engineering university» Patent №2526207. (in Russian)Google Scholar
  13. 13.
    Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphic Gems IV, pp. 474–485 (1994)CrossRefGoogle Scholar
  14. 14.
    Michelson, A.A.: Studies in Optics. University of Chicago (1927)Google Scholar
  15. 15.
    Kirillov, S.N., Balyuk, S.A., Kuznecov, S.N., Esenin, A.S.: Razrabotka modeli rasprostraneniya opticheskogo signala v vodnoj srede dlya podvodnyh sistem peredachi informacii [Development of a model of optical signal propagation in an aquatic medium for underwater information transmission systems]. Vestn. RSREU 2(40), 3–8 (2012). (in Russian)Google Scholar
  16. 16.
    Mobley, C.D.: Terrestrial optics. Applied Electromagnetics and Optics Laboratory, SRI International, Menlo Park, CaliforniaGoogle Scholar
  17. 17.
    Johnson, L.J.: The underwater optical channel. Department of engineering University of Warwick, p. 18 (2012)Google Scholar
  18. 18.
    Temperature, Salinity, Density and Ocean Circulation.
  19. 19.
    Kostkin, I.V., Pushkin, V.A., Locmanov, A.A., Korsukov, I.D.: Algoritm uluchsheniya kachestva podvodnyh izobrazhenij [Algorithm for improving the quality of underwater images]. Vestn. RSREU 2(40), 40–46 (2012). (in Russian)Google Scholar
  20. 20.
    Kirillov, S.N., Kostkin, I.V., Dmitriev, V.T.: Opticheskij kanal peredachi videoizobrazhenij s podvodnyh mobilnyh robotov dlya raznyh tipov voln i klimaticheskih zon [Optical video transmission channel from underwater mobile robots for different types of waves and climatic zones]. Morskie informacionno-upravlyayushchie sistemy 3(6), 44–51 (2014). (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ryazan State Radio Engineering UniversityRyazanRussia

Personalised recommendations