Advertisement

Principles of Managing the Process of Innovative Ideas Genesis

  • Tatiana V. MoiseevaEmail author
  • Sergey V. Smirnov
Conference paper
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 199)

Abstract

Innovative development has universally valid social value and it is very important today. Its corresponding theoretical base is developing, but there is no clear understanding how innovations are generated and what their genesis is. The description of the life cycle of the creation, development and implementation of innovation usually begins with the words: “Innovation is given”, but who gives it, where and how the innovative idea is born, is not currently the subject of researches and discussion. Therefore, it seems important, first of all, to understand where and how innovations are born, in order to design appropriate information technology for representing the meaning of problem situation in the processes of collective decision-making, and then find ways of managing this process. This article shows that the source of the innovation idea is the problem situation in which the actors turned out to be. It is proposed to use the theory of intersubjective management to solve problem situations and find ways out of them. The development of technological platform for implementing the provisions of the intersubjective management theory is based on the formal ontologies construction. Ontological engineering makes it possible to build a communicative semantic model that integrates all views of actors on the problem situation, which is necessary for the creating of their collective model of the innovation idea at the stage of the innovation origin, preceding its implementation.

Keywords

Innovative idea Problem situation Intersubjective management Innovation genesis Ontological model Formal ontology Ontological data analysis Formal concept analysis 

References

  1. 1.
    Hwang, V.W., Horowitt, G.: The Rainforest: The Secret to Building the next Silicon Valley. Regenwald, California (2012)Google Scholar
  2. 2.
    Sengupta, J.: Innovation models. In: Theory of Innovation. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-02183-6_2Google Scholar
  3. 3.
    Meissner, D., Polt, W., Vonortas, N.S.: Towards a broad understanding of innovation and its importance for innovation policy. J. Technol. Transf. 42, 1184–1211 (2017).  https://doi.org/10.1007/s10961-016-9485-4CrossRefGoogle Scholar
  4. 4.
    Baumgartner, J.: The Way of the Innovation Master. JPB, Erps-Kwerps (2010)Google Scholar
  5. 5.
    Rudenko, G.: Innovations: success formula. Effective Crisis Manag. 3 (2014). http://info.e-c-m.ru/magazine/84/eau_84_289.htm. Accessed 10 Mar 2018. (in Russian)
  6. 6.
    Kotsemir, M., Meissner, D.: Conceptualizing the innovation process – trends and outlook. J. Innov. Entrepreneurship 5(14), 1–18 (2016).  https://doi.org/10.1186/s13731-016-0042-zCrossRefGoogle Scholar
  7. 7.
    Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, Oxford (1995)Google Scholar
  8. 8.
    Vittikh, V.A.: Introduction to the theory of intersubjective management. Group Decis. Negot. 24(1), 67–95 (2015).  https://doi.org/10.1007/s10726-014-9380-zCrossRefGoogle Scholar
  9. 9.
    Längle, A.: Eine praktische anleitung der logotherapie. Überarbeitung und neugestaltung als werkbuch. Dorothee Bürgi, Residenz, St. Pölten (2007). (in German)Google Scholar
  10. 10.
    Frankl, V.E.: Man’s Search for Meaning: an Introduction to Logotherapy. Perseus Book Publishing, New York (2000)Google Scholar
  11. 11.
    Giddens, A.: Elements of the Theory of Structuration. The Constitution of Society. Polity Press, Cambridge (1984)Google Scholar
  12. 12.
    Moiseeva, T., Polyaeva, N.: Problem situation modeling in the intersubjective management theory. Herald Dagestan State Tech. Univ. Tech. Sci. 45(1), 160–171 (2018).  https://doi.org/10.21822/2073-6185-2018-45-1-160-171. (in Russian)CrossRefGoogle Scholar
  13. 13.
    Styopin, V.S. (eds.): New philosophical encyclopedia. Mysl’, Moscow (2010)Google Scholar
  14. 14.
    Küppers, G.: Self-organization – The emergence of order. From local interactions to global structures. http://www.uni-bielefeld.de/iwt/sein/paper2. Accessed 20 May 2015
  15. 15.
    Habermas, J.: Moral Consciousness and Communicative Action. The MIT Press, Cambridge (1983)Google Scholar
  16. 16.
    Kuznecov, V.G. (ed.): Dictionary of philosophical terms. INFRA-M, Moscow (2013). (in Russian)Google Scholar
  17. 17.
    Haken, H.: Erfolgsgeheimnisse der natur. synergetik: Die Lehre vom Zusammenwirken, Deutsche Verlags-Ansalt GmbH (1995). (in German)Google Scholar
  18. 18.
    Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Int. J. Hum Comput Stud. 43(5/6), 625–640 (1995)CrossRefGoogle Scholar
  19. 19.
    Smirnov, S.V.: Ontologies as semantic models. Ontol. Designing 2, 12–19 (2013). (in Russian)Google Scholar
  20. 20.
    Barsegyan, A.A., Holod, I.I., Tess, M.D., Elizarov, S.I.: Data and Process Analysis, 3d edn. BHV-Peterburg, Saint Petersburg (2009). (in Russian)Google Scholar
  21. 21.
    Smirnov, S.V.: Ontological analysis of domains modeling. News Samara Sci. Centre RAS 3(1), 62–70 (2001). (in Russian)Google Scholar
  22. 22.
    Ganter, B., Wille, R.: Formal Concept Analysis Mathematical Foundations. Springer, Berlin (1999)CrossRefGoogle Scholar
  23. 23.
    Ganter, B., Wille, R.: Conceptual scaling. In: Roberts, F. (ed.) Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, pp. 139–167. Springer, New York (1989).  https://doi.org/10.1007/978-1-4684-6381-1_6CrossRefGoogle Scholar
  24. 24.
    Wolff, K.E.: Concepts in fuzzy scaling theory: order and granularity. Fuzzy Sets Syst. 132, 63–75 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Arshinskii, V.: Substantial and formal deductions in logics with vector semantics. Autom. Remote Control 68(1), 139–148 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vinogradov, I.D., Smirnov, S.V.: Algorithm for conceptual schemes combining based on the reconstruction of their formal context. In: Fedosov, E.A., Kuznetcov, N.A., Vittikh, V.A. (eds.) III International Conference Complex Systems: Control and Modeling Problems, pp. 213–220. SamNC RAN, Samara (2001). (in Russian)Google Scholar
  27. 27.
    Stumme, G., Maedche, A.: FCA merge: bottom-up merging of ontologies. In: Proceedings of 17th International Conference on Artificial Intelligence, IJCAI 2001, Seattle, WA, USA, pp. 225–230 (2001)Google Scholar
  28. 28.
    Smirnov, S.V.: Formal approach to presenting the meaning of the problem situation in collective decision-making processes. In: XII All-Russian Management Problems Conference, pp. 6261–6270. IPU RAN, Moscow (2014). (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for the Control of Complex Systems of Russian Academy of SciencesSamaraRussia

Personalised recommendations