Advertisement

Computer Analysis of Geometrical Parameters of the Retina Epiretinal Membrane

  • Stanislav Daurov
  • Sergey Potemkin
  • Svetlana KumovaEmail author
  • Tatiana Kamenskikh
  • Igor Kolbenev
  • Elena Chernyshkova
Conference paper
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 199)

Abstract

Objective: to develop algorithms of processing of video images of optical slices of the retina of the eye to quantify the degree of folding of the epiretinal membranes and of the Central fossa. Material and methods: The object of the study was the video image of the retina obtained by optical coherence tomography. To develop methods of determining the degree of folding epiretinal membrane was formed mathematical model of the profile consisting of a base profile (low frequency component) and folding (high frequency part). Results: Developed two alternative methods of estimation of folding epiretinal membrane retinal - averaging method and the method using the Wavelet transform. The algorithm of geometrical parameters of the Central fossa: the height, width and line shape. These algorithms are implemented in a software system. Conclusion: The practical application of the developed system showed its adequacy, as well as an introduction into medical practice the use of quantitative estimates of some parameters of a condition of the retina.

Keywords

Optical coherence tomography Video Profile of epiretinal membranes Folding membranes The geometry of the central fossa The relative depth Assessment of the symmetry of the holes The deviation of the shape from the norm 

References

  1. 1.
    Lambrozo, B., Rispoli, M.: OCT of the retina. Method of analysis and interpretation, Moscow, 83 p., April 2012. (in Russian)Google Scholar
  2. 2.
    Baamonde, S., de Moura, J., Novo, J., Ortega, M.: Automatic detection of epiretinal membrane in OCT images by means of local luminosity patterns. Adv. Comput. Intell. 10305, 222–235 (2017)CrossRefGoogle Scholar
  3. 3.
    Virgili, G., Menchini, F., Murro, V., Peluso, E., Rosa, F., Casazza, G.: Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst. Rev. 7, CD008081 (2011)Google Scholar
  4. 4.
    Roh, Y.R., Park, K.H., Woo, S.J.: Foveal thickness between stratus and spectralis optical coherence tomography in retinal diseases. Korean J. Ophthalmol. 27(4), 268–275 (2013)CrossRefGoogle Scholar
  5. 5.
    Liu, Y.Y., Chen, M., Ishikawa, H., Wollstein, G., Schuman, J.S., Rehg, J.M.: Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding. Med. Image Anal. 15(5), 748–759 (2011)CrossRefGoogle Scholar
  6. 6.
    Quellec, G., Lee, K., Dolejsi, M., Garvin, M.K., Abramoff, M.D., Sonka, M.: Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula. IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010)CrossRefGoogle Scholar
  7. 7.
    Koprowski, R., Rzendkowski, M., Wrobel, Z.: Automatic method of analysis of OCT images in assessing the severity degree of glaucoma and the visual field loss. BioMed. Eng. OnLine 13, 16 (2014)CrossRefGoogle Scholar
  8. 8.
    Fu, D., Tong, H., Zheng, S., Luo, L., Gao, F., Minar, J.: Retinal status analysis method based on feature extraction and quantitative grading in OCT images, Biomed. Eng. OnLine 15, 87 (2016).  https://doi.org/10.1186/s12938-016-0206-x, https://www.researchgate.net/publiction/305519101_Retinal_status_analysis_method_based_on_feature_extraction_and_quantitative_grading_in_OCT_images
  9. 9.
    Daurov, S.K., Dolinina, O.N., Kamenskikh, T.G., Batischeva, Yu.S., Kolbenev, I.O., Andreychenko, O.A., Potemkin, S.A., Proskudin, R.A.: Computer analysis of epiretinal membrane parameters. Saratov J. Med. Sci. Res. 13(2), 350–358 (2017). (in Russian)Google Scholar
  10. 10.
    Gonsales, R., Vuds, R.: Digital Image Processing, 3rd edn. Publishing Pearson (2008). ISBN: 978-0-13-168728-8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Applied Information and Communications Technologies, Department of Applied Information TechnologyYuri Gagarin State Technical University of SaratovSaratovRussia
  2. 2.Department of Eye DiseasesSaratov State Medical University n.a. V.I. RazumovskySaratovRussia
  3. 3.Department of Foreign LanguagesSaratov State Medical University n.a. V.I. RazumovskySaratovRussia

Personalised recommendations