Advertisement

Control of a Proportional Resonant Current Controller Based Photovoltaic Power System

  • Soukaina EssaghirEmail author
  • Mohamed Benchagra
  • Noureddine El Barbri
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 912)

Abstract

This paper presents a power factor control of PV system connected to the grid. A Proportional-Resonant (PR) controller is used for replacing the conventional Proportional-Integral (PI) controller in this system. By comparison with the conventional PI control method, the PR control can introduce an infinite gain at the fundamental frequency and hence can achieve zero steady-state error. In order to examine the effectiveness of the suggested control, a simulation using the Matlab/Simulink software has been done and it’s concluded from the simulation results that the presented control by using the PR controller can be able to maintain maximum active power and to keep always a unity power factor despite variation load.

Keywords

PV system Proportional Resonant PR Proportional Integral PI VSI Unity power factor Grid 

References

  1. 1.
    Hongpeng, L., Shigong, J., Wei, W., Dianguo, X.: The maximum power point tracking based on the double index model of PV cells. In: 6th International Power Electronics and Motion Control Conference IPEMC (2009)Google Scholar
  2. 2.
    Villalva, M.G., Gazoli, J.R., Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. In: IEEE Transactions on Power Electronics (2009)Google Scholar
  3. 3.
    Kadri, R., Gaubert, J.P., Champenois, G.: An Improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control. IEEE Trans. Ind. Electron. 58(1), 66–75 (2011)CrossRefGoogle Scholar
  4. 4.
    Kim, I.-S., Kim, M.-B., Youn, M.-J.: New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Trans. Ind. Electron. 53(4), 1027–1035 (2006)CrossRefGoogle Scholar
  5. 5.
    Su, J., Chien, C., Chen, J., Wang, C.: SIMULINK behavior models for dc-dc switching converter circuits using PWM control ICs. Int. J. Eng. Educ. 22(2), 315–322 (2006)Google Scholar
  6. 6.
    Soto, D., Green, T.C.: A comparison of high-power converter topologies for the implementation of FACTS controllers. IEEE Trans. Ind. Electron. 49(5), 1072–1080 (2002)CrossRefGoogle Scholar
  7. 7.
    Rodríguez, J., Lai, J.S., Peng, F.Z.: Multilevel inverters: a survey of topologies, control and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)CrossRefGoogle Scholar
  8. 8.
    Wu, T.F., Nien, H.S., Shen, C.L., Chen, T.M.: A single-phase inverter system for PV power injection and active power filtering with nonlinear inductor consideration. In: IEEE Transactions on Industry Applications (2005)Google Scholar
  9. 9.
    Ouatman, H.: Modeling and Control of a Grid-Connected PV Energy Conversion System, vol. 10, pp. 484–492 (2015)Google Scholar
  10. 10.
    Khanna, V., Das, B.K., Bisht, D.: Matlab/simelectronics models based study of solar cells. Int. J. Renew. Energy Res. 3(1), 30–34 (2013)Google Scholar
  11. 11.
    Rezgui, W., Mouss, L.H., Mouss, M.D.: Modeling of a photovoltaic field in malfunctioning. In: International Conference on Control, Decision and Information Technologies (CoDIT) (2013)Google Scholar
  12. 12.
    Perera, B.K., Ciufo, P., Perera, S.: Point of common coupling (PCC) voltage control of a grid-connected solar photovoltaic (PV) system. In: IECON Proceedings, Industrial Electronics Conference, no. IECON, pp. 7475–7480 (2013)Google Scholar
  13. 13.
    Zammit, D., Staines, C.S., Apap, M.: PR Current Control with Harmonic Compensation in Grid Connected PV Inverters, vol. 8, no. 11, pp. 1591–1597 (2014)Google Scholar
  14. 14.
    Mari devi, S., Punitha, K.: Resonant current controller based THD reduction in AC Micro. Eng. Electron. Eng. Electron. 22(2), 425–429 (2016)Google Scholar
  15. 15.
    Teodorescu, R., Liserre, M., Rodriguez, P.: Grid Converters for Photovoltaic and Wind Power Systems. Wiley, Chichester (2011)CrossRefGoogle Scholar
  16. 16.
    Zhang, N., Tang, H., Yao, C.: A systematic method for designing a PR controller and active damping of the LCL filter for single-phase grid-connected PV inverters. Energies 7(6), 3934–3954 (2014)CrossRefGoogle Scholar
  17. 17.
    Xiaoqiang, G., Qinglin, Z., Weiyang, W.: A single-phase grid-connected inverter system with zero steady-state error. In: Power Electronics and Motion Control Conference 2006. IPEMC 2006 (2006)Google Scholar
  18. 18.
    Teodorescu, R., Blaabjerg, F., Liserre, M., Loh, P.C.: Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proceedings Electric Power Appl. 150(2), 139–145 (2003)CrossRefGoogle Scholar
  19. 19.
    Zmood, D.N., Holmes, D.G.: Stationary frame current regulation of PWM inverters with zero steady-state error. In: IEEE Transactions on Power Electronics (2003)Google Scholar
  20. 20.
    Essaghir, S., Benchagra, M., El Barbri, N.: Power factor control of a photovoltaic system connected to grid under load variation. In: International Conference on Electrical and Information Technologies (ICEIT) (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soukaina Essaghir
    • 1
    Email author
  • Mohamed Benchagra
    • 1
  • Noureddine El Barbri
    • 1
  1. 1.ISERT LaboratoryUniv Hassan 1, ENSAKhouribgaMorocco

Personalised recommendations