Advertisement

Ant Colony Optimization for Cryptanalysis of Simplified-DES

  • Hicham GrariEmail author
  • Ahmed Azouaoui
  • Khalid Zine-Dine
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 912)

Abstract

Ant Colony Optimization is a search meta-heuristic inspired by the foraging behavior of real ant, having a very wide applicability. Especially, it can be applied to different combinatorial optimization problem. In this paper, we present a novel Ant Colony Optimization (ACO) based attack for cryptanalysis of Simplified Data Standard Encryption (S-DES). A known Plaintext attack is used to recover the secret key requiring only two Plaintext-Ciphertext pairs. Moreover, our approach allows us to break S-DES encryption system in a minimum search space when compared with other techniques. Experimental results prove that ACO can be considered as a convincing tool to attack the key used in S-DES.

Keywords

Cryptanalysis ACO S-DES Pheromone 

References

  1. 1.
    Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis (1992)Google Scholar
  2. 2.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  4. 4.
    Stutzle, T., Hoos, H.: Improvements on the ant system, introducing the MAX-MIN ant system. In: Proceedings ICANNGA97—Third International Conference Artificial Neural Networks and Genetic Algorithms. Springer, Wien (1997)Google Scholar
  5. 5.
    Khan, S., Ali, A., Durrani, M.Y.: Ant-crypto, a cryptographer for data encryption standard. IJCSI 10(1) (2013)Google Scholar
  6. 6.
    Grari, H., Azouaoui, A., Zine-Dine, K.: A novel ant colony optimization based cryptanalysis of substitution cipher. In: International Afro-European Conference for Industrial Advancement AECIA (2016)Google Scholar
  7. 7.
    Nalini, N., Raghavendra Rao, G.: Cryptanalysis of simplified data encryption standard via optimisation heuristics. IJCSNS Int. J. Comput. Sci. Netw. Secur. 6(1B) (2006)Google Scholar
  8. 8.
    Sharma, L., Pathak, B.K., Sharma, R.G.: Breaking of simplified data encryption standard using genetic algorithm. Glob. J. Comput. Sci. Technol. 12(5) (2012)Google Scholar
  9. 9.
    Garg, P., Varshney, S., Bhardwaj, M.: Cryptanalysis of simplified data encryption standard using genetic algorithm. Am. J. Netw. Commun. 4(3), 32–36 (2015)CrossRefGoogle Scholar
  10. 10.
    Al Adwan, F., Al Shraideh, M., Al Saidat, M.R.S.: A genetic algorithm approach for breaking of simplified data encryption standard. Int. J. Secur. Appl. 9(9), 295–304 (2015)Google Scholar
  11. 11.
    Vimalathithan, R., Valarmathi, M.L.: Cryptanalysis of simplified-DES using computational intelligence. WSEAS Trans. Comput. 10(7), 210–219 (2011)Google Scholar
  12. 12.
    Garg, P.: Cryptanalysis of SDES via evolutionary computation techniques. IJCSIS Int. J. Comput. Sci. Inf. Secur. 1(1) (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hicham Grari
    • 1
    Email author
  • Ahmed Azouaoui
    • 1
  • Khalid Zine-Dine
    • 1
  1. 1.LAROSERI Laboratory, FSChouaib Doukkali UniversityEl JadidaMorocco

Personalised recommendations