Advertisement

The Autoimmune Regulator (AIRE) Gene, the Master Activator of Self-Antigen Expression in the Thymus

  • Matthieu GiraudEmail author
  • Pärt PetersonEmail author
Chapter

Abstract

It has been 20 years that the AIRE gene was discovered. It is the causing gene of a rare and life-threatening autoimmune disease with severe manifestations against a variety of organs. Since AIRE’s identification and positional cloning, thorough investigations have revealed key insights into the understanding of the role of AIRE and into its mode of action. It has appeared clear that AIRE uniquely induces the expression of thousands of tissue-restricted self-antigens in the thymus. These self-antigens are presented to developing T cells, resulting in the deletion of the self-reactive ones and the generation of regulatory T cells, in order to establish and maintain immunological tolerance.

References

  1. Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20:56–59CrossRefGoogle Scholar
  2. Abramson J, Goldfarb Y (2016) AIRE: from promiscuous molecular partnerships to promiscuous gene expression. Eur J Immunol 46:22–33.  https://doi.org/10.1002/eji.201545792CrossRefPubMedPubMedCentralGoogle Scholar
  3. Abramson J, Giraud M, Benoist C, Mathis D (2010) Aire’s partners in the molecular control of immunological tolerance. Cell 140:123–135.  https://doi.org/10.1016/j.cell.2009.12.030CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J (1990) Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 322:1829–1836.  https://doi.org/10.1056/NEJM199006283222601CrossRefPubMedGoogle Scholar
  5. Akiyama T, Maeda S, Yamane S et al (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308:248–251.  https://doi.org/10.1126/science.1105677CrossRefPubMedGoogle Scholar
  6. Akiyama T, Shimo Y, Yanai H et al (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29:423–437.  https://doi.org/10.1016/j.immuni.2008.06.015CrossRefPubMedGoogle Scholar
  7. Akiyoshi H, Hatakeyama S, Pitkanen J et al (2004) Subcellular Expression of Autoimmune Regulator Is Organized in a Spatiotemporal Manner. Journal of Biological Chemistry 279:33984–33991.  https://doi.org/10.1074/jbc.M400702200CrossRefPubMedGoogle Scholar
  8. Anderson MS (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401.  https://doi.org/10.1126/science.1075958CrossRefPubMedGoogle Scholar
  9. Anderson MS, Venanzi ES, Chen Z et al (2005) The cellular mechanism of aire control of T cell tolerance. Immunity 23:227–239.  https://doi.org/10.1016/j.immuni.2005.07.005CrossRefPubMedGoogle Scholar
  10. Aricha R, Feferman T, Scott HS et al (2011) The susceptibility of aire(-/-) mice to experimental myasthenia gravis involves alterations in regulatory T cells. J Autoimmun 36:16–24.  https://doi.org/10.1016/j.jaut.2010.09.007CrossRefPubMedGoogle Scholar
  11. Aschenbrenner K, D'Cruz LM, Vollmann EH et al (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8:351–358.  https://doi.org/10.1038/ni1444CrossRefPubMedGoogle Scholar
  12. Bansal K, Yoshida H, Benoist C, Mathis D (2017) The transcriptional regulator aire binds to and activates super-enhancers. Nat Immunol 18:263–273.  https://doi.org/10.1038/ni.3675CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233.  https://doi.org/10.1016/j.cell.2009.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  14. Björses P, Pelto-Huikko M, Kaukonen J et al (1999) Localization of the APECED protein in distinct nuclear structures. Hum Mol Genet 8:259–266CrossRefGoogle Scholar
  15. Bloch DB, Nakajima A, Gulick T et al (2000) Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol Cell Biol 20:6138–6146CrossRefGoogle Scholar
  16. Bottomley MJ, Collard MW, Huggenvik JI et al (2001) The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 8:626–633. https://doi.org/10.1038/89675CrossRefPubMedGoogle Scholar
  17. Brennecke P, Reyes A, Pinto S et al (2015) Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat Immunol 16:933–941.  https://doi.org/10.1038/ni.3246CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen J, Yang W, Yu C, Li Y (2008) Autoimmune regulator initiates the expression of promiscuous genes in thymic epithelial cells. Immunol Invest 37:203–214.  https://doi.org/10.1080/08820130801967841CrossRefPubMedGoogle Scholar
  19. Chuprin A, Avin A, Goldfarb Y et al (2015) The deacetylase Sirt1 is an essential regulator of aire-mediated induction of central immunological tolerance. Nat Immunol 16:737–745.  https://doi.org/10.1038/ni.3194CrossRefPubMedGoogle Scholar
  20. Danan-Gotthold M, Guyon C, Giraud M et al (2016) Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biol 17:219.  https://doi.org/10.1186/s13059-016-1079-9CrossRefPubMedPubMedCentralGoogle Scholar
  21. Daniely D, Kern J, Cebula A, Ignatowicz L (2010) Diversity of TCRs on natural Foxp3+ T cells in mice lacking aire expression. J Immunol 184:6865–6873.  https://doi.org/10.4049/jimmunol.0903609CrossRefPubMedGoogle Scholar
  22. Derbinski J, Schulte A, Kyewski B, Klein L (2001) Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2:1032–1039.  https://doi.org/10.1038/ni723CrossRefPubMedGoogle Scholar
  23. Derbinski J, Pinto S, Rösch S et al (2008) Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci U S A 105:657–662.  https://doi.org/10.1073/pnas.0707486105CrossRefPubMedPubMedCentralGoogle Scholar
  24. Desanti GE, Cowan JE, Baik S et al (2012) Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla. J Immunol 189:5519–5526.  https://doi.org/10.4049/jimmunol.1201815CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ferguson BJ, Alexander C, Rossi SW et al (2008) AIRE’s CARD revealed, a new structure for central tolerance provokes transcriptional plasticity. J Biol Chem 283:1723–1731.  https://doi.org/10.1074/jbc.M707211200CrossRefPubMedPubMedCentralGoogle Scholar
  26. Finnish-German APECED Consortium (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17:399–403.  https://doi.org/10.1038/ng1297-399CrossRefGoogle Scholar
  27. Gäbler J, Arnold J, Kyewski B (2007) Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells. Eur J Immunol 37:3363–3372.  https://doi.org/10.1002/eji.200737131CrossRefPubMedGoogle Scholar
  28. Gaetani M, Matafora V, Saare M et al (2012) AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome. Nucleic Acids Res 40:11756–11768.  https://doi.org/10.1093/nar/gks933CrossRefPubMedPubMedCentralGoogle Scholar
  29. Giraud M, Taubert R, Vandiedonck C et al (2007) An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 448:934–937.  https://doi.org/10.1038/nature06066CrossRefPubMedGoogle Scholar
  30. Giraud M, Yoshida H, Abramson J et al (2012) Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci U S A 109:535–540.  https://doi.org/10.1073/pnas.1119351109CrossRefPubMedGoogle Scholar
  31. Giraud M, Jmari N, Du L et al (2014) An RNAi screen for aire cofactors reveals a role for Hnrnpl in polymerase release and aire-activated ectopic transcription. Proc Natl Acad Sci U S A 111:1491–1496.  https://doi.org/10.1073/pnas.1323535111CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gotter J, Brors B, Hergenhahn M, Kyewski B (2004) Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 199:155–166.  https://doi.org/10.1084/jem.20031677CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gray DHD, Gavanescu I, Benoist C, Mathis D (2007a) Danger-free autoimmune disease in Aire-deficient mice. 104:18193–18198. https://doi.org/10.1073/pnas.0709160104CrossRefGoogle Scholar
  34. Gray D, Abramson J, Benoist C, Mathis D (2007b) Proliferative arrest and rapid turnover of thymic epithelial cells expressing aire. J Exp Med 204:2521–2528.  https://doi.org/10.1084/jem.20070795CrossRefPubMedPubMedCentralGoogle Scholar
  35. Guha M, Saare M, Maslovskaja J et al (2017) DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes. J Biol Chem 292:6542–6554.  https://doi.org/10.1074/jbc.M116.764704CrossRefPubMedPubMedCentralGoogle Scholar
  36. Haljasorg U, Bichele R, Saare M et al (2015) A highly conserved NF-κB-responsive enhancer is critical for thymic expression of Aire in mice. Eur J Immunol 45:3246–3256.  https://doi.org/10.1002/eji.201545928CrossRefPubMedGoogle Scholar
  37. Haljasorg U, Dooley J, Laan M et al (2017) Irf4 expression in thymic epithelium is critical for thymic regulatory T cell homeostasis. J Immunol 198:1952–1960.  https://doi.org/10.4049/jimmunol.1601698CrossRefPubMedGoogle Scholar
  38. Halonen M, Kangas H, Rüppell T et al (2004) APECED-causing mutations in AIRE reveal the functional domains of the protein. Hum Mutat 23:245–257.  https://doi.org/10.1002/humu.20003CrossRefPubMedGoogle Scholar
  39. Heino M, Peterson P, Kudoh J et al (1999) Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem Biophys Res Commun 257:821–825.  https://doi.org/10.1006/bbrc.1999.0308CrossRefPubMedGoogle Scholar
  40. Heino M, Peterson P, Sillanpaa N, et al (2000) RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur J Immunol 30:1884–1893. https://doi.org/10.1002/1521-4141(200007)30:7<1884::AID-IMMU1884>3.0.CO;2-PCrossRefGoogle Scholar
  41. Heo K, Kim H, Choi SH et al (2008) FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol Cell 30:86–97.  https://doi.org/10.1016/j.molcel.2008.02.029CrossRefPubMedGoogle Scholar
  42. Herzig Y, Nevo S, Bornstein C et al (2016) Transcriptional programs that control expression of the autoimmune regulator gene aire. Nat Immunol 18:161–172.  https://doi.org/10.1038/ni.3638CrossRefPubMedGoogle Scholar
  43. Hikosaka Y, Nitta T, Ohigashi I et al (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29:438–450.  https://doi.org/10.1016/j.immuni.2008.06.018CrossRefPubMedGoogle Scholar
  44. Hinterberger M, Aichinger M, Prazeres da Costa O et al (2010) Autonomous role of medullary thymic epithelial cells in central CD4(+) T cell tolerance. Nat Immunol 11:512–519.  https://doi.org/10.1038/ni.1874CrossRefPubMedGoogle Scholar
  45. Ilmarinen T, Melen K, Kangas H et al (2006) The monopartite nuclear localization signal of autoimmune regulator mediates its nuclear import and interaction with multiple importin alpha molecules. FEBS J 273:315–324.  https://doi.org/10.1111/j.1742-4658.2005.05065.xCrossRefPubMedGoogle Scholar
  46. Incani F, Serra M, Meloni A et al (2014) AIRE acetylation and deacetylation: effect on protein stability and transactivation activity. J Biomed Sci 21:85.  https://doi.org/10.1186/s12929-014-0085-zCrossRefPubMedPubMedCentralGoogle Scholar
  47. Irla M, Hugues S, Gill J et al (2008) Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 29:451–463.  https://doi.org/10.1016/j.immuni.2008.08.007CrossRefGoogle Scholar
  48. Johnnidis JB, Venanzi ES, Taxman DJ et al (2005) Chromosomal clustering of genes controlled by the aire transcription factor. Proc Natl Acad Sci 102:7233–7238.  https://doi.org/10.1073/pnas.0502670102CrossRefPubMedGoogle Scholar
  49. Kanno T, Kanno Y, LeRoy G et al (2014) BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol 21:1047–1057.  https://doi.org/10.1038/nsmb.2912CrossRefPubMedPubMedCentralGoogle Scholar
  50. Khan IS, Taniguchi RT, Fasano KJ et al (2014) Canonical microRNAs in thymic epithelial cells promote central tolerance. Eur J Immunol 44:1313–1319.  https://doi.org/10.1002/eji.201344079CrossRefPubMedPubMedCentralGoogle Scholar
  51. Koh AS, Kuo AJ, Park SY et al (2008) Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci U S A 105:15878–15883.  https://doi.org/10.1073/pnas.0808470105CrossRefPubMedPubMedCentralGoogle Scholar
  52. Koh AS, Kingston RE, Benoist C, Mathis D (2010) Global relevance of aire binding to hypomethylated lysine-4 of histone-3. Proc Natl Acad Sci U S A 107:13016–13021.  https://doi.org/10.1073/pnas.1004436107CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kont V, Laan M, Kisand K et al (2008) Modulation of Aire regulates the expression of tissue-restricted antigens. Mol Immunol 45:25–33.  https://doi.org/10.1016/j.molimm.2007.05.014CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kuroda N, Mitani T, Takeda N et al (2005) Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of aire-deficient mice. J Immunol 174:1862–1870CrossRefGoogle Scholar
  55. LaFlam TN, Seumois G, Miller CN et al (2015) Identification of a novel cis-regulatory element essential for immune tolerance. J Exp Med 212:1993–2002.  https://doi.org/10.1084/jem.20151069CrossRefPubMedPubMedCentralGoogle Scholar
  56. Liiv I, Rebane A, Org T et al (2008) DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. Biochim Biophys Acta 1783:74–83.  https://doi.org/10.1016/j.bbamcr.2007.09.003CrossRefPubMedPubMedCentralGoogle Scholar
  57. Liston A, Lesage S, Wilson J et al (2003) Aire regulates negative selection of organ-specific T cells. Nat Immunol 4:350–354.  https://doi.org/10.1038/ni906CrossRefPubMedGoogle Scholar
  58. Liston A, Gray DHD, Lesage S et al (2004) Gene dosage--limiting role of aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 200:1015–1026.  https://doi.org/10.1084/jem.20040581CrossRefPubMedPubMedCentralGoogle Scholar
  59. Macedo C, Evangelista AF, Marques MM et al (2013) Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells. Immunobiology 218:554–560.  https://doi.org/10.1016/j.imbio.2012.06.013CrossRefPubMedGoogle Scholar
  60. Macedo C, Oliveira EH, Almeida RS et al (2015) Aire-dependent peripheral tissue antigen mRNAs in mTEC cells feature networking refractoriness to microRNA interaction. Immunobiology 220:93–102.  https://doi.org/10.1016/j.imbio.2014.08.015CrossRefPubMedGoogle Scholar
  61. Malchow S, Leventhal DS, Nishi S et al (2013) Aire-dependent thymic development of tumor-associated regulatory T cells. Science 339:1219–1224.  https://doi.org/10.1126/science.1233913CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mathis D, Benoist C (2009) Aire. Annu Rev Immunol 27:287–312.  https://doi.org/10.1146/annurev.immunol.25.022106.141532CrossRefPubMedGoogle Scholar
  63. Meloni A, Incani F, Corda D et al (2008) Role of PHD fingers and COOH-terminal 30 amino acids in AIRE transactivation activity. Mol Immunol 45:805–809.  https://doi.org/10.1016/j.molimm.2007.06.156CrossRefPubMedGoogle Scholar
  64. Meredith M, Zemmour D, Mathis D, Benoist C (2015) Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat Immunol 16:942–949.  https://doi.org/10.1038/ni.3247CrossRefPubMedPubMedCentralGoogle Scholar
  65. Metzger TC, Khan IS, Gardner JM et al (2013) Lineage tracing and cell ablation identify a post-aire-expressing thymic epithelial cell population. Cell Rep 5:166–179.  https://doi.org/10.1016/j.celrep.2013.08.038CrossRefPubMedGoogle Scholar
  66. Michel C, Miller CN, Küchler R et al (2017) Revisiting the road map of medullary thymic epithelial cell differentiation. J Immunol 199:3488–3503.  https://doi.org/10.4049/jimmunol.1700203CrossRefPubMedGoogle Scholar
  67. Mondal N, Parvin JD (2001) DNA topoisomerase IIalpha is required for RNA polymerase II transcription on chromatin templates. Nature 413:435–438.  https://doi.org/10.1038/35096590CrossRefPubMedGoogle Scholar
  68. Murumägi A, Vähämurto P, Peterson P (2003) Characterization of regulatory elements and methylation pattern of the autoimmune regulator (AIRE) promoter. J Biol Chem 278:19784–19790.  https://doi.org/10.1074/jbc.M210437200CrossRefPubMedGoogle Scholar
  69. Myhre AG, Halonen M, Eskelin P et al (2001) Autoimmune polyendocrine syndrome type 1 (APS I) in Norway. Clin Endocrinol (Oxf) 54:211–217.  https://doi.org/10.1046/j.1365-2265.2001.01201.xCrossRefGoogle Scholar
  70. Nagamine K, Peterson P, Scott HS et al (1997) Positional cloning of the APECED gene. Nat Genet 17:393–398.  https://doi.org/10.1038/ng1297–393CrossRefPubMedGoogle Scholar
  71. Niki S, Oshikawa K, Mouri Y et al (2006) Alteration of intra-pancreatic target-organ specificity by abrogation of aire in NOD mice. J Clin Invest 116:1292–1301.  https://doi.org/10.1172/JCI26971CrossRefPubMedPubMedCentralGoogle Scholar
  72. Nishikawa Y, Hirota F, Yano M et al (2010) Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. Journal of Experimental Medicine 207:963–971.  https://doi.org/10.1084/jem.20092144CrossRefPubMedGoogle Scholar
  73. Oliveira EH, Macedo C, Collares CV et al (2016) Aire downregulation is associated with changes in the posttranscriptional control of peripheral tissue antigens in medullary thymic epithelial cells. Front Immunol 7:526.  https://doi.org/10.3389/fimmu.2016.00526CrossRefPubMedPubMedCentralGoogle Scholar
  74. Org T, Chignola F, Hetényi C et al (2008) The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep 9:370–376.  https://doi.org/10.1038/sj.embor.2008.11CrossRefPubMedPubMedCentralGoogle Scholar
  75. Org T, Rebane A, Kisand K et al (2009) AIRE activated tissue specific genes have histone modifications associated with inactive chromatin. Hum Mol Genet 18:4699–4710.  https://doi.org/10.1093/hmg/ddp433CrossRefPubMedPubMedCentralGoogle Scholar
  76. Oven I, Brdickova N, Kohoutek J et al (2007) AIRE Recruits P-TEFb for Transcriptional Elongation of Target Genes in Medullary Thymic Epithelial Cells. Mol Cell Biol 27:8815–8823.  https://doi.org/10.1128/MCB.01085–07CrossRefPubMedPubMedCentralGoogle Scholar
  77. Papadopoulou AS, Dooley J, Linterman MA et al (2011) The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nat Immunol 13:181–187.  https://doi.org/10.1038/ni.2193CrossRefPubMedPubMedCentralGoogle Scholar
  78. Park HH, Lo Y-C, Lin S-C et al (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586.  https://doi.org/10.1146/annurev.immunol.25.022106.141656CrossRefPubMedPubMedCentralGoogle Scholar
  79. Perheentupa J (2006) Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab 91:2843–2850.  https://doi.org/10.1210/jc.2005-2611CrossRefPubMedGoogle Scholar
  80. Perniola R, Musco G (2014) The biophysical and biochemical properties of the autoimmune regulator (AIRE) protein. Biochim Biophys Acta 1842:326–337.  https://doi.org/10.1016/j.bbadis.2013.11.020CrossRefPubMedGoogle Scholar
  81. Peterson P, Peltonen L (2005) Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J Autoimmun 25(Suppl):49–55.  https://doi.org/10.1016/j.jaut.2005.09.022CrossRefPubMedGoogle Scholar
  82. Peterson P, Org T, Rebane A (2008) Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 8:948–957.  https://doi.org/10.1038/nri2450CrossRefPubMedPubMedCentralGoogle Scholar
  83. Pinto S, Michel C, Schmidt-Glenewinkel H et al (2013) Overlapping gene coexpression patterns in human medullary thymic epithelial cells generate self-antigen diversity. Proc Natl Acad Sci U S A 110:E3497–E3505.  https://doi.org/10.1073/pnas.1308311110CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pitkanen J (2000) The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J Biol Chem 275:16802–16809.  https://doi.org/10.1074/jbc.M908944199CrossRefPubMedGoogle Scholar
  85. Pitkänen J, Peterson P (2003) Autoimmune regulator: from loss of function to autoimmunity. Genes Immun 4:12–21.  https://doi.org/10.1038/sj.gene.6363929CrossRefPubMedGoogle Scholar
  86. Pitkänen J, Vähämurto P, Krohn K, Peterson P (2001) Subcellular localization of the autoimmune regulator protein. characterization of nuclear targeting and transcriptional activation domain. J Biol Chem 276:19597–19602.  https://doi.org/10.1074/jbc.M008322200CrossRefPubMedGoogle Scholar
  87. Pitkanen J, Rebane A, Rowell J et al (2005) Cooperative activation of transcription by autoimmune regulator AIRE and CBP. Biochem Biophys Res Commun 333:944–953.  https://doi.org/10.1016/j.bbrc.2005.05.187CrossRefPubMedGoogle Scholar
  88. Ramsey C, Bukrinsky A, Peltonen L (2002a) Systematic mutagenesis of the functional domains of AIRE reveals their role in intracellular targeting. Hum Mol Genet 11:3299–3308CrossRefGoogle Scholar
  89. Ramsey C, Winqvist O, Puhakka L et al (2002b) Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet 11:397–409CrossRefGoogle Scholar
  90. Rinderle C, Christensen HM, Schweiger S et al (1999) AIRE encodes a nuclear protein co-localizing with cytoskeletal filaments: altered sub-cellular distribution of mutants lacking the PHD zinc fingers. Human Molecular Genetics 8:277–290CrossRefGoogle Scholar
  91. Roberts NA, White AJ, Jenkinson WE et al (2012) Rank signaling links the development of invariant γδ T cell progenitors and aire(+) medullary epithelium. Immunity 36:427–437.  https://doi.org/10.1016/j.immuni.2012.01.016CrossRefPubMedPubMedCentralGoogle Scholar
  92. Rossi SW, Kim MY, Leibbrandt A et al (2007) RANK signals from CD4+3 inducer cells regulate development of aire-expressing epithelial cells in the thymic medulla. J Exp Med 204:1267–1272.  https://doi.org/10.1084/jem.20062497CrossRefPubMedPubMedCentralGoogle Scholar
  93. Saare M, Rebane A, Rajashekar B et al (2012) Autoimmune regulator is acetylated by transcription coactivator CBP/p300. Exp Cell Res 318:1–12.  https://doi.org/10.1016/j.yexcr.2012.04.013CrossRefGoogle Scholar
  94. Saltis M, Criscitiello MF, Ohta Y et al (2008) Evolutionarily conserved and divergent regions of the autoimmune regulator (Aire) gene: a comparative analysis. Immunogenetics 60:105–114.  https://doi.org/10.1007/s00251-007-0268-9CrossRefPubMedGoogle Scholar
  95. Sansom SN, Shikama-Dorn N, Zhanybekova S et al (2014) Population and single-cell genomics reveal the aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 24:1918–1931.  https://doi.org/10.1101/gr.171645.113CrossRefPubMedPubMedCentralGoogle Scholar
  96. Sousa Cardoso R, Magalhães DAR, Baião AMT et al (2006) Onset of promiscuous gene expression in murine fetal thymus organ culture. Immunology 119:369–375.  https://doi.org/10.1111/j.1365-2567.2006.02441.xCrossRefPubMedPubMedCentralGoogle Scholar
  97. St-Pierre C, Trofimov A, Brochu S et al (2015) Differential Features of AIRE-Induced and AIRE-Independent Promiscuous Gene Expression in Thymic Epithelial Cells. J Immunol 195:498–506.  https://doi.org/10.4049/jimmunol.1500558CrossRefPubMedGoogle Scholar
  98. Surdo PL, Bottomley MJ, Sattler M, Scheffzek K (2003) Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein-1 reveals deoxyribonucleic acid and zinc binding regions. Mol Endocrinol 17:1283–1295.  https://doi.org/10.1210/me.2002-0409CrossRefPubMedGoogle Scholar
  99. Takaba H, Morishita Y, Tomofuji Y et al (2015) Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163:975–987.  https://doi.org/10.1016/j.cell.2015.10.013CrossRefPubMedGoogle Scholar
  100. Tao Y, Kupfer R, Stewart BJ et al (2006) AIRE recruits multiple transcriptional components to specific genomic regions through tethering to nuclear matrix. Mol Immunol 43:335–345.  https://doi.org/10.1016/j.molimm.2005.02.018CrossRefPubMedGoogle Scholar
  101. Teh CE, Daley SR, Enders A, Goodnow CC (2010) T-cell regulation by casitas B-lineage lymphoma (Cblb) is a critical failsafe against autoimmune disease due to autoimmune regulator (Aire) deficiency. Proc Natl Acad Sci USA 107:14709–14714.  https://doi.org/10.1073/pnas.1009209107CrossRefPubMedGoogle Scholar
  102. Ucar O, Tykocinski L-O, Dooley J et al (2013) An evolutionarily conserved mutual interdependence between aire and microRNAs in promiscuous gene expression. Eur J Immunol 43:1769–1778.  https://doi.org/10.1002/eji.201343343CrossRefPubMedPubMedCentralGoogle Scholar
  103. Villaseñor J, Besse W, Benoist C, Mathis D (2008) Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated. Proc Natl Acad Sci U S A 105:15854–15859.  https://doi.org/10.1073/pnas.0808069105CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wang X, Laan M, Bichele R et al (2012) Post-aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens. Front Immunol 3:19.  https://doi.org/10.3389/fimmu.2012.00019CrossRefPubMedPubMedCentralGoogle Scholar
  105. Watanabe N, Wang Y-H, Lee HK et al (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436:1181–1185.  https://doi.org/10.1038/nature03886CrossRefPubMedGoogle Scholar
  106. Waterfield M, Khan IS, Cortez JT et al (2014) The transcriptional regulator aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance. Nat Immunol 15:258–265.  https://doi.org/10.1038/ni.2820CrossRefPubMedPubMedCentralGoogle Scholar
  107. Yang S, Bansal K, Lopes J et al (2013) Aire’s plant homeodomain(PHD)-2 is critical for induction of immunological tolerance. Proc Natl Acad Sci U S A 110:1833–1838.  https://doi.org/10.1073/pnas.1222023110CrossRefPubMedPubMedCentralGoogle Scholar
  108. Yang S, Fujikado N, Kolodin D et al (2015) Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348:589–594.  https://doi.org/10.1126/science.aaa7017CrossRefPubMedPubMedCentralGoogle Scholar
  109. Yano M, Kuroda N, Han H et al (2008) Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med 205:2827–2838.  https://doi.org/10.1084/jem.20080046CrossRefPubMedPubMedCentralGoogle Scholar
  110. Yoshida H, Bansal K, Schaefer U et al (2015) Brd4 bridges the transcriptional regulators, aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. Proc Natl Acad Sci U S A 112:E4448–E4457.  https://doi.org/10.1073/pnas.1512081112CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ziv Y, Bielopolski D, Galanty Y et al (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8:870–876.  https://doi.org/10.1038/ncb1446CrossRefPubMedGoogle Scholar
  112. Zuklys S, Mayer CE, Zhanybekova S et al (2012) MicroRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. J Immunol 189:3894–3904.  https://doi.org/10.4049/jimmunol.1200783CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zumer K, Plemenitas A, Saksela K, Peterlin BM (2011) Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res 39:7908–7919.  https://doi.org/10.1093/nar/gkr527CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zumer K, Low AK, Jiang H et al (2012) Unmodified histone H3K4 and DNA-dependent protein kinase recruit autoimmune regulator to target genes. Mol Cell Biol 32:1354–1362.  https://doi.org/10.1128/MCB.06359-11CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut National de la Santé et de la Recherche Médicale (INSERM)Université de NantesNantesFrance
  2. 2.Molecular Pathology, Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia

Personalised recommendations