Advertisement

Thymus Ontogeny and Development

  • J. J. Muñoz
  • A. G. ZapataEmail author
Chapter

Abstract

The thymus is a primary lymphoid organ constituted by a 3D epithelial network that provides a specialized microenvironment in which seeding lymphoid progenitors undergo phenotypical and functional maturation. During the earlier steps of thymic organogenesis, the specification of the pharyngeal endoderm to thymus fate takes place independently of the expression of the transcription factor Foxn1 that, however, governs the later organogenesis of thymus together with the colonizing lymphoid cells. In the present chapter, we will review evidence describing early development of thymus and its resemblance with the development of endoderm-derived epithelial organs based on tubulogenesis and branching morphogenesis as well as the molecules known to be involved in these processes.

Notes

Acknowledgments

This work was supported by Grants BFU2013-41112-R from the Spanish Ministry of Economy and Competitiveness, Cell Therapy Network (RD12/0019/0007) from the Spanish Ministry of Health and Consume, and Avancell-CM (S2017/BMD-3692) from Community of Madrid

References

  1. Anderson G, McCarthy NI (2015) Laying bare the nude mouse gene. J Immunol 194(3):847–848.  https://doi.org/10.4049/jimmunol.1403061CrossRefPubMedGoogle Scholar
  2. Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, De Robertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130(15):3567–3578CrossRefGoogle Scholar
  3. Bain VE, Gordon J, O’Neil JD, Ramos I, Richie ER, Manley NR (2016) Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate. Development 143(21):4027–4037.  https://doi.org/10.1242/dev.141903CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD, Gill J, Boyd R, Sussman DJ et al (2002) Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 3(11):1102–1108.  https://doi.org/10.1038/ni850CrossRefPubMedGoogle Scholar
  5. Baldini A (2004) DiGeorge syndrome: an update. Curr Opin Cardiol 19(3):201–204CrossRefGoogle Scholar
  6. Barsanti M, Lim JM, Hun ML, Lister N, Wong K, Hammett MV, Lepletier A, Boyd RL, Giudice A et al (2017) A novel Foxn1(eGFP/+) mouse model identifies Bmp4-induced maintenance of Foxn1 expression and thymic epithelial progenitor populations. Eur J Immunol 47(2):291–304.  https://doi.org/10.1002/eji.201646553CrossRefPubMedGoogle Scholar
  7. Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW (2001) The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 128(16):3081–3094PubMedGoogle Scholar
  8. Blackburn CC, Manley NR (2004) Developing a new paradigm for thymus organogenesis. Nat Rev Immunol 4(4):278–289.  https://doi.org/10.1038/nri1331CrossRefPubMedGoogle Scholar
  9. Bleul CC, Boehm T (2005) BMP signaling is required for normal thymus development. J Immunol 175(8):5213–5221CrossRefGoogle Scholar
  10. Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441(7096):992–996.  https://doi.org/10.1038/nature04850CrossRefPubMedGoogle Scholar
  11. Bredenkamp N, Nowell CS, Blackburn CC (2014a) Regeneration of the aged thymus by a single transcription factor. Development 141(8):1627–1637.  https://doi.org/10.1242/dev.103614CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bredenkamp N, Ulyanchenko S, O’Neill KE, Manley NR, Vaidya HJ, Blackburn CC (2014b) An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol 16(9):902–908.  https://doi.org/10.1038/ncb3023CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brown CB, Wenning JM, Lu MM, Epstein DJ, Meyers EN, Epstein JA (2004) Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol 267(1):190–202.  https://doi.org/10.1016/j.ydbio.2003.10.024CrossRefPubMedGoogle Scholar
  14. Chen L, Xiao S, Manley NR (2009) Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113(3):567–574.  https://doi.org/10.1182/blood-2008-05-156265CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen L, Zhao P, Wells L, Amemiya CT, Condie BG, Manley NR (2010) Mouse and zebrafish Hoxa3 orthologues have nonequivalent in vivo protein function. Proc Natl Acad Sci U S A 107(23):10555–10560.  https://doi.org/10.1073/pnas.1005129107CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cheng L, Guo J, Sun L, Fu J, Barnes PF, Metzger D, Chambon P, Oshima RG, Amagai T et al (2010) Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem 285(8):5836–5847.  https://doi.org/10.1074/jbc.M109.072124CrossRefPubMedGoogle Scholar
  17. Chisaka O, Kameda Y (2005) Hoxa3 regulates the proliferation and differentiation of the third pharyngeal arch mesenchyme in mice. Cell Tissue Res 320(1):77–89.  https://doi.org/10.1007/s00441-004-1042-zCrossRefPubMedGoogle Scholar
  18. Chojnowski JL, Masuda K, Trau HA, Thomas K, Capecchi M, Manley NR (2014) Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse. Development 141(19):3697–3708.  https://doi.org/10.1242/dev.110833CrossRefPubMedPubMedCentralGoogle Scholar
  19. Corbeaux T, Hess I, Swann JB, Kanzler B, Haas-Assenbaum A, Boehm T (2010) Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proc Natl Acad Sci U S A 107(38):16613–16618.  https://doi.org/10.1073/pnas.1004623107CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cordier AC (1974) Ultrastructure of the thymus in “Nude” mice. J Ultrastruct Res 47(20):26–40CrossRefGoogle Scholar
  21. Cordier AC, Haumont SM (1980) Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and nude mice. Am J Anat 157(3):227–263.  https://doi.org/10.1002/aja.1001570303CrossRefPubMedGoogle Scholar
  22. Cordier AC, Heremans JF (1975) Nude mouse embryo: ectodermal nature of the primordial thymic defect. Scand J Immunol 4(2):193–196CrossRefGoogle Scholar
  23. Dooley J, Erickson M, Roelink H, Farr AG (2005) Nude thymic rudiment lacking functional foxn1 resembles respiratory epithelium. Dev Dyn 233(4):1605–1612.  https://doi.org/10.1002/dvdy.20495CrossRefPubMedGoogle Scholar
  24. Erickson M, Morkowski S, Lehar S, Gillard G, Beers C, Dooley J, Rubin JS, Rudensky A, Farr AG (2002) Regulation of thymic epithelium by keratinocyte growth factor. Blood 100(9):3269–3278.  https://doi.org/10.1182/blood-2002-04-1036CrossRefPubMedGoogle Scholar
  25. Foster KE, Gordon J, Cardenas K, Veiga-Fernandes H, Makinen T, Grigorieva E, Wilkinson DG, Blackburn CC, Richie E et al (2010) EphB-ephrin-B2 interactions are required for thymus migration during organogenesis. Proc Natl Acad Sci U S A 107(30):13414–13419.  https://doi.org/10.1073/pnas.1003747107CrossRefPubMedPubMedCentralGoogle Scholar
  26. Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM (2002) An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129(19):4591–4603PubMedPubMedCentralGoogle Scholar
  27. Fujimoto Y, Tu L, Miller AS, Bock C, Fujimoto M, Doyle C, Steeber DA, Tedder TF (2002) CD83 expression influences CD4+ T cell development in the thymus. Cell 108(6):755–767CrossRefGoogle Scholar
  28. Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79(1):143–156CrossRefGoogle Scholar
  29. Gordon J, Manley NR (2011) Mechanisms of thymus organogenesis and morphogenesis. Development 138(18):3865–3878.  https://doi.org/10.1242/dev.059998CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gordon J, Bennett AR, Blackburn CC, Manley NR (2001) Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev 103(1-2):141–143CrossRefGoogle Scholar
  31. Gordon J, Wilson VA, Blair NF, Sheridan J, Farley A, Wilson L, Manley NR, Blackburn CC (2004) Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol 5(5):546–553.  https://doi.org/10.1038/ni1064CrossRefPubMedGoogle Scholar
  32. Gordon J, Patel SR, Mishina Y, Manley NR (2010) Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol 339(1):141–154.  https://doi.org/10.1016/j.ydbio.2009.12.026CrossRefPubMedPubMedCentralGoogle Scholar
  33. Graham A (2001) The development and evolution of the pharyngeal arches. J Anat 199(Pt 1-2):133–141CrossRefGoogle Scholar
  34. Griffith AV, Cardenas K, Carter C, Gordon J, Iberg A, Engleka K, Epstein JA, Manley NR, Richie ER (2009) Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos. Dev Biol 327(1):216–227.  https://doi.org/10.1016/j.ydbio.2008.12.019CrossRefPubMedGoogle Scholar
  35. Guo J, Rahman M, Cheng L, Zhang S, Tvinnereim A, Su DM (2011) Morphogenesis and maintenance of the 3D thymic medulla and prevention of nude skin phenotype require FoxN1 in pre- and post-natal K14 epithelium. J Mol Med (Berl) 89(3):263–277.  https://doi.org/10.1007/s00109-010-0700-8CrossRefGoogle Scholar
  36. Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott HS, Matsumoto M, Minato N (2007) Medullary thymic epithelial cells expressing aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 8(3):304–311.  https://doi.org/10.1038/ni1438CrossRefPubMedGoogle Scholar
  37. Hauser BR, Hoffman MP (2015) Regulatory mechanisms driving salivary gland organogenesis. Curr Top Dev Biol 115:111–130.  https://doi.org/10.1016/bs.ctdb.2015.07.029CrossRefPubMedPubMedCentralGoogle Scholar
  38. Heinonen KM, Vanegas JR, Brochu S, Shan J, Vainio SJ, Perreault C (2011) Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors. Blood 118(19):5163–5173.  https://doi.org/10.1182/blood-2011-04-350553CrossRefPubMedGoogle Scholar
  39. Hetzer-Egger C, Schorpp M, Haas-Assenbaum A, Balling R, Peters H, Boehm T (2002) Thymopoiesis requires Pax9 function in thymic epithelial cells. Eur J Immunol 32(4):1175–1181.  https://doi.org/10.1002/1521-4141(200204)32:4<1175::Aid-immu1175>3.0.Co;2-uCrossRefPubMedGoogle Scholar
  40. Itoi M, Kawamoto H, Katsura Y, Amagai T (2001) Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage. Int Immunol 13(9):1203–1211CrossRefGoogle Scholar
  41. Itoi M, Tsukamoto N, Amagai T (2007) Expression of Dll4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus. Int Immunol 19(2):127–132.  https://doi.org/10.1093/intimm/dxl129CrossRefPubMedGoogle Scholar
  42. Jenkinson WE, Jenkinson EJ, Anderson G (2003) Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J Exp Med 198(2):325–332.  https://doi.org/10.1084/jem.20022135CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jenkinson WE, Rossi SW, Parnell SM, Jenkinson EJ, Anderson G (2007) PDGFRalpha-expressing mesenchyme regulates thymus growth and the availability of intrathymic niches. Blood 109(3):954–960.  https://doi.org/10.1182/blood-2006-05-023143CrossRefPubMedGoogle Scholar
  44. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127(8):1607–1616PubMedGoogle Scholar
  45. Kameda Y, Ito M, Nishimaki T, Gotoh N (2009) FRS2alpha is required for the separation, migration, and survival of pharyngeal-endoderm derived organs including thyroid, ultimobranchial body, parathyroid, and thymus. Dev Dyn 238(3):503–513.  https://doi.org/10.1002/dvdy.21867CrossRefPubMedGoogle Scholar
  46. Ki S, Park D, Selden HJ, Seita J, Chung H, Kim J, Iyer VR, Ehrlich LIR (2014) Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution. Cell Rep 9(1):402–415.  https://doi.org/10.1016/j.celrep.2014.08.070CrossRefPubMedPubMedCentralGoogle Scholar
  47. Larsen HL, Grapin-Botton A (2017) The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 66:51–68.  https://doi.org/10.1016/j.semcdb.2017.01.005CrossRefPubMedGoogle Scholar
  48. Le Douarin NM, Jotereau FV (1975) Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J Exp Med 142(1):17–40CrossRefGoogle Scholar
  49. Le Lievre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34(1):125–154PubMedGoogle Scholar
  50. Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF et al (2001) Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410(6824):97–101.  https://doi.org/10.1038/35065105CrossRefPubMedGoogle Scholar
  51. Ma D, Wei Y, Liu F (2013) Regulatory mechanisms of thymus and T cell development. Dev Comp Immunol 39(1-2):91–102.  https://doi.org/10.1016/j.dci.2011.12.013CrossRefPubMedGoogle Scholar
  52. Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121(7):1989–2003PubMedGoogle Scholar
  53. Manley NR, Selleri L, Brendolan A, Gordon J, Cleary ML (2004) Abnormalities of caudal pharyngeal pouch development in Pbx1 knockout mice mimic loss of Hox3 paralogs. Dev Biol 276(2):301–312.  https://doi.org/10.1016/j.ydbio.2004.08.030CrossRefPubMedGoogle Scholar
  54. Manley NR, Richie ER, Blackburn CC, Condie BG, Sage J (2011) Structure and function of the thymic microenvironment. Front Biosci (Landmark Ed) 16:2461–2477CrossRefGoogle Scholar
  55. Masuda K, Itoi M, Amagai T, Minato N, Katsura Y, Kawamoto H (2005) Thymic anlage is colonized by progenitors restricted to T, NK, and dendritic cell lineages. J Immunol 174(5):2525–2532CrossRefGoogle Scholar
  56. Metz A, Knochel S, Buchler P, Koster M, Knochel W (1998) Structural and functional analysis of the BMP-4 promoter in early embryos of Xenopus laevis. Mech Dev 74(1-2):29–39CrossRefGoogle Scholar
  57. Moore-Scott BA, Manley NR (2005) Differential expression of Sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev Biol 278(2):323–335.  https://doi.org/10.1016/j.ydbio.2004.10.027CrossRefPubMedGoogle Scholar
  58. Mulroy T, McMahon JA, Burakoff SJ, McMahon AP, Sen J (2002) Wnt-1 and Wnt-4 regulate thymic cellularity. Eur J Immunol 32(4):967–971.  https://doi.org/10.1002/1521-4141(200204)32:4<967::Aid-immu967>3.0.Co;2-6CrossRefPubMedGoogle Scholar
  59. Munoz JJ, Cejalvo T, Tobajas E, Fanlo L, Cortes A, Zapata AG (2015) 3D immunofluorescence analysis of early thymic morphogenesis and medulla development. Histol Histopathol 30(5):589–599.  https://doi.org/10.14670/HH-30.589CrossRefPubMedGoogle Scholar
  60. Munoz JJ, Garcia-Ceca J, Montero-Herradon S, Sanchez Del Collado B, Alfaro D, Zapata A (2018) Can a proper T-cell development occur in an altered thymic epithelium? Lessons From EphB-Deficient Thymi. Front Endocrinol (Lausanne) 9:135.  https://doi.org/10.3389/fendo.2018.00135CrossRefGoogle Scholar
  61. Nehls M, Kyewski B, Messerle M, Waldschutz R, Schuddekopf K, Smith AJ, Boehm T (1996) Two genetically separable steps in the differentiation of thymic epithelium. Science (New York, NY) 272(5263):886–889CrossRefGoogle Scholar
  62. Neubuser A, Koseki H, Balling R (1995) Characterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1. Dev Biol 170(2):701–716.  https://doi.org/10.1006/dbio.1995.1248CrossRefPubMedGoogle Scholar
  63. Neves H, Dupin E, Parreira L, Le Douarin NM (2012) Modulation of Bmp4 signalling in the epithelial-mesenchymal interactions that take place in early thymus and parathyroid development in avian embryos. Dev Biol 361(2):208–219.  https://doi.org/10.1016/j.ydbio.2011.10.022CrossRefPubMedGoogle Scholar
  64. Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, Sugano S, Akiyama T (2004) DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23(52):8520–8526.  https://doi.org/10.1038/sj.onc.1207892CrossRefPubMedGoogle Scholar
  65. Nowell CS, Bredenkamp N, Tetelin S, Jin X, Tischner C, Vaidya H, Sheridan JM, Stenhouse FH, Heussen R et al (2011) Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet 7(11):e1002348.  https://doi.org/10.1371/journal.pgen.1002348CrossRefPubMedPubMedCentralGoogle Scholar
  66. O’Neill KE, Bredenkamp N, Tischner C, Vaidya HJ, Stenhouse FH, Peddie CD, Nowell CS, Gaskell T, Blackburn CC (2016) Foxn1 is dynamically regulated in thymic epithelial cells during embryogenesis and at the onset of thymic involution. PLoS One 11(3):e0151666.  https://doi.org/10.1371/journal.pone.0151666CrossRefPubMedPubMedCentralGoogle Scholar
  67. Osada M, Jardine L, Misir R, Andl T, Millar SE, Pezzano M (2010) DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration. PLoS One 5(2):e9062.  https://doi.org/10.1371/journal.pone.0009062CrossRefPubMedPubMedCentralGoogle Scholar
  68. Patel SR, Gordon J, Mahbub F, Blackburn CC, Manley NR (2006) Bmp4 and Noggin expression during early thymus and parathyroid organogenesis. Gene Expr Patterns 6(8):794–799.  https://doi.org/10.1016/j.modgep.2006.01.011CrossRefPubMedGoogle Scholar
  69. Peters H, Neubuser A, Kratochwil K, Balling R (1998) Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 12(17):2735–2747CrossRefGoogle Scholar
  70. Reeh KA, Cardenas KT, Bain VE, Liu Z, Laurent M, Manley NR, Richie ER (2014) Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development 141(15):2950–2958.  https://doi.org/10.1242/dev.111641CrossRefPubMedPubMedCentralGoogle Scholar
  71. Revest JM, Suniara RK, Kerr K, Owen JJ, Dickson C (2001) Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol 167(4):1954–1961CrossRefGoogle Scholar
  72. Rode I, Martins VC, Kublbeck G, Maltry N, Tessmer C, Rodewald HR (2015) Foxn1 protein expression in the developing, aging, and regenerating thymus. J Immunol 195(12):5678–5687.  https://doi.org/10.4049/jimmunol.1502010CrossRefPubMedGoogle Scholar
  73. Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441(7096):988–991.  https://doi.org/10.1038/nature04813CrossRefPubMedGoogle Scholar
  74. Soza-Ried C, Bleul CC, Schorpp M, Boehm T (2008) Maintenance of thymic epithelial phenotype requires extrinsic signals in mouse and zebrafish. J Immunol 181(8):5272–5277CrossRefGoogle Scholar
  75. Su DM, Manley NR (2000) Hoxa3 and pax1 transcription factors regulate the ability of fetal thymic epithelial cells to promote thymocyte development. J Immunol 164(11):5753–5760CrossRefGoogle Scholar
  76. Su D, Ellis S, Napier A, Lee K, Manley NR (2001) Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol 236(2):316–329.  https://doi.org/10.1006/dbio.2001.0342CrossRefPubMedGoogle Scholar
  77. Su DM, Navarre S, Oh WJ, Condie BG, Manley NR (2003) A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol 4(11):1128–1135.  https://doi.org/10.1038/ni983CrossRefPubMedGoogle Scholar
  78. Swann JB, Happe C, Boehm T (2017a) Elevated levels of Wnt signaling disrupt thymus morphogenesis and function. Sci Rep 7(1):785.  https://doi.org/10.1038/s41598-017-00842-0CrossRefPubMedPubMedCentralGoogle Scholar
  79. Swann JB, Krauth B, Happe C, Boehm T (2017b) Cooperative interaction of BMP signalling and Foxn1 gene dosage determines the size of the functionally active thymic epithelial compartment. Sci Rep 7(1):8492.  https://doi.org/10.1038/s41598-017-09213-1CrossRefPubMedPubMedCentralGoogle Scholar
  80. Takahama Y, Ohigashi I, Baik S, Anderson G (2017) Generation of diversity in thymic epithelial cells. Nat Rev Immunol 17(5):295–305.  https://doi.org/10.1038/nri.2017.12CrossRefPubMedGoogle Scholar
  81. Tsai PT, Lee RA, Wu H (2003) BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis. Blood 102(12):3947–3953.  https://doi.org/10.1182/blood-2003-05-1657CrossRefPubMedGoogle Scholar
  82. Tucker AS (2007) Salivary gland development. Semin Cell Dev Biol 18(2):237–244.  https://doi.org/10.1016/j.semcdb.2007.01.006CrossRefPubMedGoogle Scholar
  83. Uddin MM, Ohigashi I, Motosugi R, Nakayama T, Sakata M, Hamazaki J, Nishito Y, Rode I, Tanaka K et al (2017) Foxn1-beta5t transcriptional axis controls CD8(+) T-cell production in the thymus. Nat Commun 8:14419.  https://doi.org/10.1038/ncomms14419CrossRefPubMedPubMedCentralGoogle Scholar
  84. Vaidya HJ, Briones Leon A, Blackburn CC (2016) FOXN1 in thymus organogenesis and development. Eur J Immunol 46(8):1826–1837.  https://doi.org/10.1002/eji.201545814CrossRefPubMedPubMedCentralGoogle Scholar
  85. Villasenor A, Chong DC, Henkemeyer M, Cleaver O (2010) Epithelial dynamics of pancreatic branching morphogenesis. Development 137(24):4295–4305.  https://doi.org/10.1242/dev.052993CrossRefPubMedPubMedCentralGoogle Scholar
  86. Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129(19):4605–4611PubMedGoogle Scholar
  87. Vroegindeweij E, Crobach S, Itoi M, Satoh R, Zuklys S, Happe C, Germeraad WT, Cornelissen JJ, Cupedo T et al (2010) Thymic cysts originate from Foxn1 positive thymic medullary epithelium. Mol Immunol 47(5):1106–1113.  https://doi.org/10.1016/j.molimm.2009.10.034CrossRefPubMedGoogle Scholar
  88. Walker JL, Menko AS, Khalil S, Rebustini I, Hoffman MP, Kreidberg JA, Kukuruzinska MA (2008) Diverse roles of E-cadherin in the morphogenesis of the submandibular gland: insights into the formation of acinar and ductal structures. Dev Dyn 237(11):3128–3141.  https://doi.org/10.1002/dvdy.21717CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wallin J, Eibel H, Neubuser A, Wilting J, Koseki H, Balling R (1996) Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development 122(1):23–30PubMedGoogle Scholar
  90. Wendland K, Niss K, Kotarsky K, Wu NYH, White AJ, Jendholm J, Rivollier A, Izarzugaza JMG, Brunak S et al (2018) Retinoic acid signaling in thymic epithelial cells regulates thymopoiesis. J Immunol 201(2):524–532.  https://doi.org/10.4049/jimmunol.1800418CrossRefPubMedGoogle Scholar
  91. Wendling O, Dennefeld C, Chambon P, Mark M (2000) Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 127(8):1553–1562PubMedGoogle Scholar
  92. Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X (2002) Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129(13):3033–3044PubMedPubMedCentralGoogle Scholar
  93. Zou D, Silvius D, Davenport J, Grifone R, Maire P, Xu PX (2006) Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev Biol 293(2):499–512.  https://doi.org/10.1016/j.ydbio.2005.12.015CrossRefPubMedGoogle Scholar
  94. Zuklys S, Gill J, Keller MP, Hauri-Hohl M, Zhanybekova S, Balciunaite G, Na KJ, Jeker LT, Hafen K et al (2009) Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function. J Immunol 182(5):2997–3007.  https://doi.org/10.4049/jimmunol.0713723CrossRefPubMedGoogle Scholar
  95. Zuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, Mayer CE, Teh HY, Hafen K et al (2016) Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol 17(10):1206–1215.  https://doi.org/10.1038/ni.3537CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Cytometry and Fluorescence MicroscopyComplutense UniversityMadridSpain
  2. 2.Department of Cell BiologyComplutense UniversityMadridSpain

Personalised recommendations