Advertisement

Group Theory

  • Rafael Martínez-GuerraEmail author
  • Oscar Martínez-Fuentes
  • Juan Javier Montesinos-García
Chapter
Part of the Mathematical and Analytical Techniques with Applications to Engineering book series (MATE)

Abstract

This chapter provides an introduction to group theory, the chapter begins with basic definitions about groups, then continues to introduce subgroups and its characteristics, followed by homomorphisms, the chapter concludes with various theorems about isomorphisms, along with the concepts, various examples are provided to facilitate the understanding of the theory. This material ca ben found in any introductory book on abstract algebra (also called modern algebra).

References

  1. 1.
    Birkhoff, G., Mac Lane, S.: A Survey of Modern Algebra. Universities Press (1965)Google Scholar
  2. 2.
    Dummit, D.S., Foote, R.M.: Abstract Algebra (Vol. 3). Hoboken: Wiley (2004)Google Scholar
  3. 3.
    Fraleigh, J.B.: A First Course in Abstract Algebra. Addison-Wesley (2003)Google Scholar
  4. 4.
    Hungerford, T.W.: Abstract Algebra: an Introduction. Cengage Learning (2012)Google Scholar
  5. 5.
    Sontag, E.D.: Linear systems over commutative rings. A Survey. Ricerche di Automatica 7(1), 1–34 (1976)Google Scholar
  6. 6.
    Bourbaki, N.: Theory of Sets. Springer, Berlin, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Herstein, I.N.: Topics in Algebra. Wiley (2006)Google Scholar
  8. 8.
    Lang, S.: Algebra. Springer (2002)Google Scholar
  9. 9.
    Herstein, I.N.: Abstract Algebra. Prentice Hall (1996)Google Scholar
  10. 10.
    Saracino, D.: Abstract Algebra: a First Course. Waveland Press (2008)Google Scholar
  11. 11.
    Jacobson, N.: Lectures in Abstract Algebra, vol. 1. Van Nostrand, Basic Concepts (1951)Google Scholar
  12. 12.
    Zariski, O., Samuel, P.: Commutative Algebra Vol. 1. Springer Science & Business Media (1958)Google Scholar
  13. 13.
    Zariski, O., Samuel, P.: Commutative Algebra Vol. 2. Springer Science & Business Media (1960)Google Scholar
  14. 14.
    Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhuser (1985)Google Scholar
  15. 15.
    Borel, A.: Linear Algebraic Groups (Vol. 126). Springer Science & Business Media (2012)Google Scholar
  16. 16.
    Samuel, P., Serge, B.: Mthodes d’algbre abstraite en gomtrie algbrique. Springer (1967)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafael Martínez-Guerra
    • 1
    Email author
  • Oscar Martínez-Fuentes
    • 1
  • Juan Javier Montesinos-García
    • 1
  1. 1.Departamento de Control AutomáticoCINVESTAV-IPNMexico CityMexico

Personalised recommendations