Advertisement

Mathematical Background

  • Rafael Martínez-GuerraEmail author
  • Oscar Martínez-Fuentes
  • Juan Javier Montesinos-García
Chapter
Part of the Mathematical and Analytical Techniques with Applications to Engineering book series (MATE)

Abstract

This chapter focuses on the basic concepts and algebra of sets as well as a brief introduction to the theory of functions and the well known principle of mathematical induction. All this background will be needed as a tool to understand the theory of linear algebra and differential equations as set forth in the following chapters.

References

  1. 1.
    Adamson, I. T.: A Set Theory Workbook. Springer Science & Business Median, New York (2012)Google Scholar
  2. 2.
    Hammack, R.: Book of proof. Virginia Commonwealth University Mathematics (2013)Google Scholar
  3. 3.
    Lang, S.: Algebra. Springer, New York (2002)CrossRefGoogle Scholar
  4. 4.
    Lipschutz, S.: Schaum’s outline of theory and problems of set theory and related topics (1964)Google Scholar
  5. 5.
    Bourbaki, N.: Theory of Sets. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Halmos, P.R.: Naive Set Theory. Dover Publications, New York (2017)Google Scholar
  7. 7.
    Henkin, L.: On mathematical induction. Am. Math. Monthly 67(4), 323–338 (1960)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hrbacek, K., Jech, T.: Introduction to Set Theory, Revised and Expanded. CRC Press, Boca Raton (1999)Google Scholar
  9. 9.
    Sominskii, I.S.: The Method of Mathematical Induction (Popular Lectures in Mathematics). Pergamon Press, Oxford (1961)Google Scholar
  10. 10.
    Bourbaki, N. Commutative Algebra (Vol. 8), Hermann, Paris (1972)Google Scholar
  11. 11.
    Kuratowski, K.: Introduction to Set Theory and Topology. Elsevier, Amsterdam (2014)CrossRefGoogle Scholar
  12. 12.
    Smith, D., Eggen, M., Andre, R.S.: A Transition to Advanced Mathematics. Nelson Education (2014)Google Scholar
  13. 13.
    Jech, T. J.: The axiom of choice. Courier Corporation (2008)Google Scholar
  14. 14.
    Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhuser, Boston (1985)CrossRefGoogle Scholar
  15. 15.
    Zariski, O., Samuel, P.: Commutative Algebra, vol. 1. Springer Science & Business Media, New York (1958)Google Scholar
  16. 16.
    Birkhoff, G., Mac Lane, S.: A Survey of Modern Algebra. Universities Press (1965)Google Scholar
  17. 17.
    Sontag, E.D.: Linear systems over commutative rings. A survey. Ricerche di Automatica 7(1), 1–34 (1976)Google Scholar
  18. 18.
    Samuel, P., Serge, B.: Mthodes d’algbre abstraite en gomtrie algbrique. Springer, Heidelberg (1967)Google Scholar
  19. 19.
    Zariski, O., Samuel, P.: Commutative Algebra, vol. 2. Springer Science & Business Media, New York (1960)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafael Martínez-Guerra
    • 1
    Email author
  • Oscar Martínez-Fuentes
    • 1
  • Juan Javier Montesinos-García
    • 1
  1. 1.Departamento de Control AutomáticoCINVESTAV-IPNMexico CityMexico

Personalised recommendations