Advertisement

The Hip in Myelomeningocele

  • Emmanouil MorakisEmail author
  • Jason J. Howard
  • James Wright
Chapter

Abstract

Musculoskeletal manifestations associated with myelomeningocele (MMC) are common; often resulting in significant functional impairments relating to gait abnormalities, seating imbalance, and skin ulceration. Hip deformities, including soft tissue contractures and dislocation, are seen across neurosegmental levels; the former of which may cause impairments in ambulatory capacity. Hip dislocation in MMC was treated aggressively in the past due to a then commonly held view that reducing these hips would lead to better outcomes. Over the last 20 years, this view has been challenged, with best evidence suggesting that the risks of treatment for hip dislocation in spina bifida far outweigh the benefits. Muscle lengthening, however, can lead to improvements in gait and function. This chapter will review the evidence relating to the treatment of the hip in spina bifida, emphasizing a measured approach when addressing associated deformities, particularly with respect to dislocation.

Keywords

Myelomeningocele Spina bifida Hip dislocation Hip flexion contracture 

References

  1. 1.
    Broughton NS, Menelaus MB, Cole WG, Shurtleff DB. The natural history of hip deformity in myelomeningocele. J Bone Joint Surg Br. 1993;75(5):760–3.CrossRefGoogle Scholar
  2. 2.
    Wright JG. Hip and spine surgery is of questionable value in spina bifida: an evidence-based review. Clin Orthop Relat Res. 2011;469(5):1258–64.  https://doi.org/10.1007/s11999-010-1595-y.CrossRefPubMedGoogle Scholar
  3. 3.
    Tulpius N. Observationes medicae. Amsterdam: Elzevirium; 1641.Google Scholar
  4. 4.
    Asher M, Olson J. Factors affecting the ambulatory status of patients with spina bifida cystica. J Bone Joint Surg Am. 1983;65(3):350–6.CrossRefGoogle Scholar
  5. 5.
    Sharrard WJ. The segmental innervation of the lower limb muscles in man. Ann R Coll Surg Engl. 1964;35:106–22.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Duckworth T, Yamashita T, Franks CI, Brown BH. Somatosensory evoked cortical responses in children with spina bifida. Dev Med Child Neurol. 1976;18(1):19–24.CrossRefGoogle Scholar
  7. 7.
    Stark Gordon D, Baker Geoffrey CW. The neurological involvement of the lower limbs in myelomeningocele. Dev Med Child Neurol. 1967;9(6):732–44.  https://doi.org/10.1111/j.1469-8749.1967.tb02355.x.CrossRefGoogle Scholar
  8. 8.
    Shurtleff DB. International Myelodysplasia Study Group Database Coordination. Seattle, WA: Department of Pediatrics, University of Washington; 1993.Google Scholar
  9. 9.
    Charney EB, Melchionni JB, Smith DR. Community ambulation by children with myelomeningocele and high-level paralysis. J Pediatr Orthop. 1991;11(5):579–82.CrossRefGoogle Scholar
  10. 10.
    Mazur JM, Kyle S. Efficacy of bracing the lower limbs and ambulation training in children with myelomeningocele. Dev Med Child Neurol. 2004;46(5):352–6.CrossRefGoogle Scholar
  11. 11.
    Stillwell A, Menelaus MB. Walking ability in mature patients with spina bifida. J Pediatr Orthop. 1983;3(2):184–90.CrossRefGoogle Scholar
  12. 12.
    Swank M, Dias L. Myelomeningocele: a review of the orthopaedic aspects of 206 patients treated from birth with no selection criteria. Dev Med Child Neurol. 1992;34(12):1047–52.CrossRefGoogle Scholar
  13. 13.
    De Souza LJ, Carroll N. Ambulation of the braced myelomeningocele patient. J Bone Joint Surg Am. 1976;58(8):1112–8.CrossRefGoogle Scholar
  14. 14.
    McDonald CM, Jaffe KM, Mosca VS, Shurtleff DB. Ambulatory outcome of children with myelomeningocele: effect of lower-extremity muscle strength. Dev Med Child Neurol. 1991;33(6):482–90.CrossRefGoogle Scholar
  15. 15.
    Samuelsson L, Skoog M. Ambulation in patients with myelomeningocele: a multivariate statistical analysis. J Pediatr Orthop. 1988;8(5):569–75.CrossRefGoogle Scholar
  16. 16.
    Swank M, Dias LS. Walking ability in spina bifida patients: a model for predicting future ambulatory status based on sitting balance and motor level. J Pediatr Orthop. 1994;14(6):715–8.CrossRefGoogle Scholar
  17. 17.
    Selber P, Dias L. Sacral-level myelomeningocele: long-term outcome in adults. J Pediatr Orthop. 1998;18(4):423–7.PubMedGoogle Scholar
  18. 18.
    Brinker MR, Rosenfeld SR, Feiwell E, Granger SP, Mitchell DC, Rice JC. Myelomeningocele at the sacral level. Long-term outcomes in adults. J Bone Joint Surg Am. 1994;76(9):1293–300.CrossRefGoogle Scholar
  19. 19.
    Khoury MJ, Erickson JD, James LM. Etiologic heterogeneity of neural tube defects. II. Clues from family studies. Am J Hum Genet. 1982;34(6):980–7.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Seller MJ. Recurrence risks for neural tube defects in a genetic counseling clinic population. J Med Genet. 1981;18(4):245–8.CrossRefGoogle Scholar
  21. 21.
    Toriello HV, Higgins JV. Occurrence of neural tube defects among first-, second-, and third-degree relatives of probands: results of a United States study. Am J Med Genet. 1983;15(4):601–6.  https://doi.org/10.1002/ajmg.1320150409.CrossRefPubMedGoogle Scholar
  22. 22.
    Yang Y, Chen J, Wang B, Ding C, Liu H. Association between MTHFR C677T polymorphism and neural tube defect risks: a comprehensive evaluation in three groups of NTD patients, mothers, and fathers. Birth Defects Res A Clin Mol Teratol. 2015;103(6):488–500.  https://doi.org/10.1002/bdra.23361.CrossRefPubMedGoogle Scholar
  23. 23.
    Benedum CM, Yazdy MM, Mitchell AA, Werler MM. Impact of periconceptional use of nitrosatable drugs on the risk of neural tube defects. Am J Epidemiol. 2015;182(8):675–84.  https://doi.org/10.1093/aje/kwv126.CrossRefPubMedGoogle Scholar
  24. 24.
    Loeken MR. Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet. 2005;135C(1):77–87.  https://doi.org/10.1002/ajmg.c.30056.CrossRefPubMedGoogle Scholar
  25. 25.
    Makelarski JA, Romitti PA, Rocheleau CM, Burns TL, Stewart PA, Waters MA, et al. Maternal periconceptional occupational pesticide exposure and neural tube defects. Birth Defects Res A Clin Mol Teratol. 2014;100(11):877–86.  https://doi.org/10.1002/bdra.23293.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Reefhuis J, Honein MA, Schieve LA, Rasmussen SA, National Birth Defects Prevention Study. Use of clomiphene citrate and birth defects, National Birth Defects Prevention Study, 1997–2005. Hum Reprod. 2011;26(2):451–7.  https://doi.org/10.1093/humrep/deq313.CrossRefPubMedGoogle Scholar
  27. 27.
    Dreier JW, Andersen AM, Berg-Beckhoff G. Systematic review and meta-analyses: fever in pregnancy and health impacts in the offspring. Pediatrics. 2014;133(3):e674–88.  https://doi.org/10.1542/peds.2013-3205.CrossRefPubMedGoogle Scholar
  28. 28.
    Hibbard E, Smithells RW. Folic acid metabolism and human embryopathy. Lancet. 1965;285(7398):1254.  https://doi.org/10.1016/S0140-6736(65)91895-7.CrossRefGoogle Scholar
  29. 29.
    Smithells RW, Sheppard S, Schorah CJ. Vitamin deficiencies and neural tube defects. Arch Dis Child. 1976;51(12):944–50.CrossRefGoogle Scholar
  30. 30.
    Wald NJ, Hackshaw AD, Stone R, Sourial NA. Blood folic acid and vitamin B12 in relation to neural tube defects. Br J Obstet Gynaecol. 1996;103(4):319–24.CrossRefGoogle Scholar
  31. 31.
    Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med. 2000;343(22):1608–14.  https://doi.org/10.1056/NEJM200011303432204.CrossRefPubMedGoogle Scholar
  32. 32.
    Laurence KM, James N, Miller MH, Tennant GB, Campbell H. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. Br Med J (Clin Res Ed). 1981;282(6275):1509–11.CrossRefGoogle Scholar
  33. 33.
    MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;338(8760):131–7.CrossRefGoogle Scholar
  34. 34.
    Centers for Disease Control Prevention (CDC). Spina bifida and anencephaly before and after folic acid mandate--United States, 1995–1996 and 1999–2000. MMWR Morb Mortal Wkly Rep. 2004;53(17):362–5.Google Scholar
  35. 35.
    Shurtleff DB, Menelaus MB, Staheli LT, Chew DE, Lamers JY, Stillwell A, et al. Natural history of flexion deformity of the hip in myelodysplasia. J Pediatr Orthop. 1986;6(6):666–73.CrossRefGoogle Scholar
  36. 36.
    Breed AL, Healy PM. The midlumbar myelomeningocele hip: mechanism of dislocation and treatment. J Pediatr Orthop. 1982;2(1):15–24.CrossRefGoogle Scholar
  37. 37.
    Lindseth RE, Dias LS, Drennan JC. Myelomeningocele. Instr Course Lect. 1991;40:271–91.PubMedGoogle Scholar
  38. 38.
    Menelaus MB, Broughton NS. The orthopaedic management of spina bifida cystica, Current problems in orthopaedics. 3rd ed. Edinburgh: WB Saunders; 1998.Google Scholar
  39. 39.
    Buckley SL, Sponseller PD, Magid D. The acetabulum in congenital and neuromuscular hip instability. J Pediatr Orthop. 1991;11(4):498–501.CrossRefGoogle Scholar
  40. 40.
    Gugenheim JJ, Gerson LP, Sadler C, Tullos HS. Pathologic morphology of the acetabulum in paralytic and congenital hip instability. J Pediatr Orthop. 1982;2(4):397–400.CrossRefGoogle Scholar
  41. 41.
    Blundell Jones G. Paralytic dislocation of the hip. J Bone Joint Surg. 1954;36(3):375–84.CrossRefGoogle Scholar
  42. 42.
    Somerville EW. Paralytic dislocation of the hip. J Bone Joint Surg Br. 1959;41-B(2):279–88.CrossRefGoogle Scholar
  43. 43.
    Brookes M, Wardle E. Muscle action and the shape of the femur. J Bone Joint Surg Br. 1962;44-B(2):398–411.CrossRefGoogle Scholar
  44. 44.
    Dias LS, Locher FG, Mazur JM, Olysav D. Femoral neck abnormalities in spina bifida. Clin Orthop Relat Res. 1984;(184):164–8.Google Scholar
  45. 45.
    Dias LS, Hill JA. Evaluation of treatment of hip subluxation in myelomeningocele by intertrochanteric varus derotation femoral osteotomy. Orthop Clin North Am. 1980;11(1):31–7.PubMedGoogle Scholar
  46. 46.
    Feiwell E, Sakai D, Blatt T. The effect of hip reduction on function in patients with myelomeningocele. Potential gains and hazards of surgical treatment. J Bone Joint Surg Am. 1978;60(2):169–73.CrossRefGoogle Scholar
  47. 47.
    Keggi J, Banta J, Walton C. The myelodysplastic hip and scoliosis. Eur J Pediatr Surg. 1991;1(Suppl 1):47.PubMedGoogle Scholar
  48. 48.
    Fraser RK, Bourke HM, Broughton NS, Menelaus MB. Unilateral dislocation of the hip in spina bifida. A long-term follow-up. J Bone Joint Surg Br. 1995;77(4):615–9.CrossRefGoogle Scholar
  49. 49.
    Lorber J. Results of treatment of myelomeningocele. An analysis of 524 unselected cases, with special reference to possible selection for treatment. Dev Med Child Neurol. 1971;13(3):279–303.CrossRefGoogle Scholar
  50. 50.
    Davis BE, Daley CM, Shurtleff DB, Duguay S, Seidel K, Loeser JD, et al. Long-term survival of individuals with myelomeningocele. Pediatr Neurosurg. 2005;41(4):186–91.  https://doi.org/10.1159/000086559.CrossRefPubMedGoogle Scholar
  51. 51.
    Oakeshott P, Hunt GM, Poulton A, Reid F. Expectation of life and unexpected death in open spina bifida: a 40-year complete, non-selective, longitudinal cohort study. Dev Med Child Neurol. 2010;52(8):749–53.  https://doi.org/10.1111/j.1469-8749.2009.03543.x.CrossRefPubMedGoogle Scholar
  52. 52.
    Wong LY, Paulozzi LJ. Survival of infants with spina bifida: a population study, 1979–94. Paediatr Perinat Epidemiol. 2001;15(4):374–8.CrossRefGoogle Scholar
  53. 53.
    McDonnell GV, McCann JP. Why do adults with spina bifida and hydrocephalus die? A clinic-based study. Eur J Pediatr Surg. 2000;10(S1):31–2.  https://doi.org/10.1055/s-2008-1072411.CrossRefPubMedGoogle Scholar
  54. 54.
    Murray CB, Holmbeck GN, Ros AM, Flores DM, Mir SA, Varni JW. A longitudinal examination of health-related quality of life in children and adolescents with spina bifida. J Pediatr Psychol. 2015;40(4):419–30.  https://doi.org/10.1093/jpepsy/jsu098.CrossRefPubMedGoogle Scholar
  55. 55.
    Rocque BG, Bishop ER, Scogin MA, Hopson BD, Arynchyna AA, Boddiford CJ, et al. Assessing health-related quality of life in children with spina bifida. J Neurosurg Pediatr. 2015;15(2):144–9.  https://doi.org/10.3171/2014.10.peds1441.CrossRefPubMedGoogle Scholar
  56. 56.
    Rofail D, Maguire L, Kissner M, Colligs A, Abetz-Webb L. Health-related quality of life is compromised in individuals with spina bifida: results from qualitative and quantitative studies. Eur J Obstet Gynecol Reprod Biol. 2014;181:214–22.  https://doi.org/10.1016/j.ejogrb.2014.07.048.CrossRefPubMedGoogle Scholar
  57. 57.
    Bellin MH, Zabel TA, Dicianno BE, Levey E, Garver K, Linroth R, et al. Correlates of depressive and anxiety symptoms in young adults with spina bifida. J Pediatr Psychol. 2010;35(7):778–89.  https://doi.org/10.1093/jpepsy/jsp094.CrossRefPubMedGoogle Scholar
  58. 58.
    Arnett J, Lynn Tanner J, Gibbons J, Ashdown BK. Emerging adults in America: coming of age in the 21st century. Washington, DC: American Psychological Association; 2006.CrossRefGoogle Scholar
  59. 59.
    Roach JW, Short BF, Saltzman HM. Adult consequences of spina bifida: a cohort study. Clin Orthop Relat Res. 2011;469(5):1246–52.  https://doi.org/10.1007/s11999-010-1594-z.CrossRefPubMedGoogle Scholar
  60. 60.
    Hoffman HJ, Hendrick EB, Humphreys RP. The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Childs Brain. 1976;2(3):145–55.PubMedGoogle Scholar
  61. 61.
    Mazur JM, Shurtleff D, Menelaus M, Colliver J. Orthopaedic management of high-level spina bifida. Early walking compared with early use of a wheelchair. J Bone Joint Surg Am. 1989;71(1):56–61.CrossRefGoogle Scholar
  62. 62.
    Wallace SJ. The effect of upper-limb function on mobility of children with myelomeningocele. Dev Med Child Neurol Suppl. 1973;(Suppl 29):84–91.CrossRefGoogle Scholar
  63. 63.
    Danielsson AJ, Bartonek A, Levey E, McHale K, Sponseller P, Saraste H. Associations between orthopaedic findings, ambulation and health-related quality of life in children with myelomeningocele. J Child Orthop. 2008;2(1):45–54.  https://doi.org/10.1007/s11832-007-0069-6.CrossRefPubMedGoogle Scholar
  64. 64.
    Hoffer MM, Feiwell E, Perry R, Perry J, Bonnett C. Functional ambulation in patients with myelomeningocele. J Bone Joint Surg Am. 1973;55(1):137–48.CrossRefGoogle Scholar
  65. 65.
    Huff CW, Ramsey PL. Myelodysplasia. The influence of the quadriceps and hip abductor muscles on ambulatory function and stability of the hip. J Bone Joint Surg Am. 1978;60(4):432–43.CrossRefGoogle Scholar
  66. 66.
    Schoenmakers MA, Uiterwaal CS, Gulmans VA, Gooskens RH, Helders PJ. Determinants of functional independence and quality of life in children with spina bifida. Clin Rehabil. 2005;19(6):677–85.  https://doi.org/10.1191/0269215505cr865oa.CrossRefPubMedGoogle Scholar
  67. 67.
    Bartonek A, Saraste H. Factors influencing ambulation in myelomeningocele: a cross-sectional study. Dev Med Child Neurol. 2001;43(4):253–60.CrossRefGoogle Scholar
  68. 68.
    Schopler SA, Menelaus MB. Significance of the strength of the quadriceps muscles in children with myelomeningocele. J Pediatr Orthop. 1987;7(5):507–12.CrossRefGoogle Scholar
  69. 69.
    Seitzberg A, Lind M, Biering-Sorensen F. Ambulation in adults with myelomeningocele. Is it possible to predict the level of ambulation in early life? Childs Nerv Syst. 2008;24(2):231–7.  https://doi.org/10.1007/s00381-007-0450-2.CrossRefPubMedGoogle Scholar
  70. 70.
    Gabrieli AP, Vankoski SJ, Dias LS, Milani C, Lourenco A, Filho JL, et al. Gait analysis in low lumbar myelomeningocele patients with unilateral hip dislocation or subluxation. J Pediatr Orthop. 2003;23(3):330–4.PubMedGoogle Scholar
  71. 71.
    Alman BA, et al. Function of dislocated hips in children with lower level spina bifida. J Bone Joint Surg Br. 1996;78(2):294–8.CrossRefGoogle Scholar
  72. 72.
    Swaroop VT, Dias L. Orthopedic management of spina bifida. Part I: hip, knee, and rotational deformities. J Child Orthop. 2009;3(6):441–9.  https://doi.org/10.1007/s11832-009-0214-5.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Beuriat PA, Szathmari A, Hameury F, Poirot I, Massoud M, Massardier J et al. [Changes in the epidemiology of Spina Bifida in France in the last 30 years]. Neurochirurgie. 2017;63(2):109–111. doi: https://doi.org/10.1016/j.neuchi.2017.01.003.CrossRefGoogle Scholar
  74. 74.
    Khoshnood B, Loane M, de Walle H, Arriola L, Addor MC, Barisic I, et al. Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ. 2015;351:h5949.  https://doi.org/10.1136/bmj.h5949.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    North T, Cheong A, Steinbok P, Radic JA. Trends in incidence and long-term outcomes of myelomeningocele in British Columbia. Childs Nerv Syst. 2018;34(4):717–24.  https://doi.org/10.1007/s00381-017-3685-6.CrossRefPubMedGoogle Scholar
  76. 76.
    Orioli IM, Lima do Nascimento R, Lopez-Camelo JS, Castilla EE. Effects of folic acid fortification on spina bifida prevalence in Brazil. Birth Defects Res A Clin Mol Teratol. 2011;91(9):831–5.  https://doi.org/10.1002/bdra.20830.CrossRefPubMedGoogle Scholar
  77. 77.
    Canfield MA, Marengo L, Ramadhani TA, Suarez L, Brender JD, Scheuerle A. The prevalence and predictors of anencephaly and spina bifida in Texas. Paediatr Perinat Epidemiol. 2009;23(1):41–50.  https://doi.org/10.1111/j.1365-3016.2008.00975.x.CrossRefPubMedGoogle Scholar
  78. 78.
    Centers for Disease Control Prevention (CDC). Racial/ethnic differences in the birth prevalence of spina bifida - United States, 1995–2005. MMWR Morb Mortal Wkly Rep. 2009;57(53):1409–13.Google Scholar
  79. 79.
    Deak KL, Siegel DG, George TM, Gregory S, Ashley-Koch A, Speer MC, et al. Further evidence for a maternal genetic effect and a sex-influenced effect contributing to risk for human neural tube defects. Birth Defects Res A Clin Mol Teratol. 2008;82(10):662–9.  https://doi.org/10.1002/bdra.20511.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Matson MA, Mahone EM, Zabel TA. Serial neuropsychological assessment and evidence of shunt malfunction in spina bifida: a longitudinal case study. Child Neuropsychol. 2005;11(4):315–32.  https://doi.org/10.1080/09297040490916910.CrossRefPubMedGoogle Scholar
  81. 81.
    McLone DG, Czyzewski D, Raimondi AJ, Sommers RC. Central nervous system infections as a limiting factor in the intelligence of children with myelomeningocele. Pediatrics. 1982;70(3):338.Google Scholar
  82. 82.
    de Jong TP, Chrzan R, Klijn AJ, Dik P. Treatment of the neurogenic bladder in spina bifida. Pediatr Nephrol. 2008;23(6):889–96.  https://doi.org/10.1007/s00467-008-0780-7.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Muller T, Arbeiter K, Aufricht C. Renal function in meningomyelocele: risk factors, chronic renal failure, renal replacement therapy and transplantation. Curr Opin Urol. 2002;12(6):479–84.  https://doi.org/10.1097/01.mou.0000039446.39928.32.CrossRefPubMedGoogle Scholar
  84. 84.
    Smith K, Neville-Jan A, Freeman KA, Adams E, Mizokawa S, Dudgeon BJ, et al. The effectiveness of bowel and bladder interventions in children with spina bifida. Dev Med Child Neurol. 2016;58(9):979–88.  https://doi.org/10.1111/dmcn.13095.CrossRefPubMedGoogle Scholar
  85. 85.
    Sawin KJ, Liu T, Ward E, Thibadeau J, Schechter MS, Soe MM, et al. The National Spina Bifida Patient Registry: profile of a large cohort of participants from the first 10 clinics. J Pediatr. 2015;166(2):444–50.e1.  https://doi.org/10.1016/j.jpeds.2014.09.039.CrossRefPubMedGoogle Scholar
  86. 86.
    Ottolini K, Harris AB, Amling JK, Kennelly AM, Phillips LA, Tosi LL. Wound care challenges in children and adults with spina bifida: an open-cohort study. J Pediatr Rehabil Med. 2013;6(1):1–10.  https://doi.org/10.3233/PRM-130231.CrossRefPubMedGoogle Scholar
  87. 87.
    Alliaume A. [Fractures of the long bones in myelomeningocele]. Arch Fr Pediatr. 1950;7(3):294–5.Google Scholar
  88. 88.
    Lock TR, Aronson DD. Fractures in patients who have myelomeningocele. J Bone Joint Surg Am. 1989;71(8):1153–7.CrossRefGoogle Scholar
  89. 89.
    Gabriel K. Natural history of hip deformity in spina bifida. In: Sarwark JF, Lubicky JP, Shriners Hospitals for Children, editors. Caring for the child with spina bifida: Shriners Hospitals for Children, Symposium, Oak Brook, Illinois, April 14–16, 2000. 1st ed. Rosemont, IL: American Academy of Orthopaedic Surgeon; 2001. p. 89.Google Scholar
  90. 90.
    Carroll NC, Sharrard WJ. Long-term follow-up of posterior iliopsoas transplantation for paralytic dislocation of the hip. J Bone Joint Surg Am. 1972;54(3):551–60.CrossRefGoogle Scholar
  91. 91.
    Samuelsson L, Eklof O. Hip instability in myelomeningocele. 158 patients followed for 15 years. Acta Orthop Scand. 1990;61(1):3–6.CrossRefGoogle Scholar
  92. 92.
    Barden GA, Meyer LC, Stelling FH III. Myelodysplastics--fate of those followed for twenty years or more. J Bone Joint Surg Am. 1975;57(5):643–7.CrossRefGoogle Scholar
  93. 93.
    Park TS, Cail WS, Maggio WM, Mitchell DC. Progressive spasticity and scoliosis in children with myelomeningocele. Radiological investigation and surgical treatment. J Neurosurg. 1985;62(3):367–75.  https://doi.org/10.3171/jns.1985.62.3.0367.CrossRefPubMedGoogle Scholar
  94. 94.
    Sarwark JF, Weber DT, Gabrieli AP, McLone DG, Dias L. Tethered cord syndrome in low motor level children with myelomeningocele. Pediatr Neurosurg. 1996;25(6):295–301.  https://doi.org/10.1159/000121143.CrossRefPubMedGoogle Scholar
  95. 95.
    Menelaus MB. Dislocation and deformity of the hip in children with spina bifida cystica. J Bone Joint Surg Br. 1969;51(2):238–51.CrossRefGoogle Scholar
  96. 96.
    Sharrard WJ. Paralytic deformity in the lower limb. J Bone Joint Surg Br. 1967;49(4):731–47.CrossRefGoogle Scholar
  97. 97.
    Vankoski SJ, Sarwark JF, Moore C, Dias L. Characteristic pelvic, hip, and knee kinematic patterns in children with lumbosacral myelomeningocele. Gait Posture. 1995;3(1):51–7.  https://doi.org/10.1016/0966-6362(95)90809-7.CrossRefGoogle Scholar
  98. 98.
    Sarwark JF, Lubicky JP, Shriners Hospitals for Children. Caring for the child with spina bifida: Shriners Hospitals for Children, Symposium, Oak Brook, Illinois, April 14–16, 2000. 1st ed. Rosemont, IL: American Academy of Orthopaedic Surgeon; 2001.Google Scholar
  99. 99.
    Duffy CM, Hill AE, Cosgrove AP, Corry IS, Mollan RA, Graham HK. Three-dimensional gait analysis in spina bifida. J Pediatr Orthop. 1996;16(6):786–91.CrossRefGoogle Scholar
  100. 100.
    Drummond DS, Moreau M, Cruess RL. Post-operative neuropathic fractures in patients with myelomeningocele. Dev Med Child Neurol. 1981;23(2):147–50.CrossRefGoogle Scholar
  101. 101.
    James CC. Fractures of the lower limbs in spina bifida cystica: a survey of 44 fractures in 122 children. Dev Med Child Neurol Suppl. 1970;22(Suppl 22):88+.Google Scholar
  102. 102.
    Kumar SJ, Cowell HR, Townsend P. Physeal, metaphyseal, and diaphyseal injuries of the lower extremities in children with myelomeningocele. J Pediatr Orthop. 1984;4(1):25–7.CrossRefGoogle Scholar
  103. 103.
    Boytim MJ, Davidson RS, Charney E, Melchionni JB. Neonatal fractures in myelomeningocele patients. J Pediatr Orthop. 1991;11(1):28–30.CrossRefGoogle Scholar
  104. 104.
    Martinelli V, Dell’Atti C, Ausili E, Federici E, Magarelli N, Leone A, et al. Risk of fracture prevention in spina bifida patients: correlation between bone mineral density, vitamin D, and electrolyte values. Childs Nerv Syst. 2015;31(8):1361–5.  https://doi.org/10.1007/s00381-015-2726-2.CrossRefPubMedGoogle Scholar
  105. 105.
    Szalay EA, Cheema A. Children with spina bifida are at risk for low bone density. Clin Orthop Relat Res. 2011;469(5):1253–7.  https://doi.org/10.1007/s11999-010-1634-8.CrossRefPubMedGoogle Scholar
  106. 106.
    Valtonen KM, Goksor LA, Jonsson O, Mellstrom D, Alaranta HT, Viikari-Juntura ER. Osteoporosis in adults with meningomyelocele: an unrecognized problem at rehabilitation clinics. Arch Phys Med Rehabil. 2006;87(3):376–82.  https://doi.org/10.1016/j.apmr.2005.11.004.CrossRefPubMedGoogle Scholar
  107. 107.
    Kaufman BA, Terbrock A, Winters N, Ito J, Klosterman A, Park TS. Disbanding a multidisciplinary clinic: effects on the health care of myelomeningocele patients. Pediatr Neurosurg. 1994;21(1):36–44.  https://doi.org/10.1159/000120812.CrossRefPubMedGoogle Scholar
  108. 108.
    Broughton NS. The hip. In: Broughton NS, Menelaus MB, editors. Menelaus’ orthopaedic management of spina bifida cystica. 3rd ed. London: W.B. Saunders; 1998. p. 135–44.Google Scholar
  109. 109.
    Morakis E, Wright J. Evidence-based treatment of spina bifida. In: Alshryda S, Huntley J, Banaszkiewicz PA, editors. Evidence-based paediatric orthopaedics: the best answers to clinical questions. 1st ed. New York, NY: Springer; 2016.Google Scholar
  110. 110.
    Frawley PA, Broughton NS, Menelaus MB. Anterior release for fixed flexion deformity of the hip in spina bifida. J Bone Joint Surg Br. 1996;78(2):299–302.CrossRefGoogle Scholar
  111. 111.
    Mazur JM. Orthopedic complications of myelomeningocele. In: Epps CH, Bowen JR, editors. Complications in pediatric orthopaedic surgery. Philadelphia, PA: Lippincott; 1995. p. 545–64.Google Scholar
  112. 112.
    Buisson JS, Hamblen DL. Electromyographic assessment of the transplanted ilio-psoas muscle in spina bifida cystica. Dev Med Child Neurol Suppl. 1972;27:29–33.PubMedGoogle Scholar
  113. 113.
    Rothe MJ. A cluster of anaphylactic reactions in children with spina bifida during general anesthesia: epidemiological features, risk factors, and latex hypersensitivity. Dermatitis. 1995;6(3):53–61.Google Scholar
  114. 114.
    Meeropol E, Frost J, Pugh L, Roberts J, Ogden JA. Latex allergy in children with myelodysplasia: a survey of Shriners hospitals. J Pediatr Orthop. 1993;13(1):1–4.CrossRefGoogle Scholar
  115. 115.
    Pearson Michele L, Cole Jeane S, Jarvis William R. How common is latex allergy? A survey of children with myelodysplasia. Dev Med Child Neurol. 1994;36(1):64–9.  https://doi.org/10.1111/j.1469-8749.1994.tb11767.x.CrossRefGoogle Scholar
  116. 116.
    Tosi LL, Slater JE, Shaer C, Mostello LA. Latex allergy in spina bifida patients: prevalence and surgical implications. J Pediatr Orthop. 1993;13(6):709–12.CrossRefGoogle Scholar
  117. 117.
    Nieto A, Estornell F, Mazón A, Reig C, Nieto A, García-Ibarra F. Allergy to latex in spina bifida: a multivariate study of associated factors in 100 consecutive patients. J Allergy Clin Immunol. 1996;98(3):501–7.  https://doi.org/10.1016/S0091-6749(96)70082-9.CrossRefPubMedGoogle Scholar
  118. 118.
    Yassin MS, Sanyurah S, Lierl MB, Fischer TJ, Oppenheimer S, Cross J, et al. Evaluation of latex allergy in patients with meningomyelocele. Ann Allergy. 1992;69(3):207–11.PubMedGoogle Scholar
  119. 119.
    Slater JE. Latex allergy. J Allergy Clin Immunol. 1994;94(2):139–49.  https://doi.org/10.1053/ai.1994.v94.a55437.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Emmanouil Morakis
    • 1
    Email author
  • Jason J. Howard
    • 2
  • James Wright
    • 3
  1. 1.Royal Manchester Children’s HospitalManchesterUK
  2. 2.Weill Cornell Medicine, Chief of Orthopaedic SurgerySidra MedicineDohaQatar
  3. 3.Oxford University Hospitals NHS Foundation TrustOxfordUK

Personalised recommendations