Advertisement

Kinematic Synthesis of Programmed Motions of Drivers of a Manipulator-Tripod with a Three-Degree Gripper

  • Natalia S. Vorob’evaEmail author
  • Victor V. Zhoga
  • Ivan A. Nesmiyanov
  • Andrey V. Dyashkin
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article provides a solution for the task with regard to synthesis of the laws for motion of the slave cylinders in a parallel-serial structure manipulator to realize the predetermined path of an end effector. The set of points characterizing subsequent positions of the actuators is determined by solving an optimization task on the manipulator’s configuration. The laws for motion of slave cylinders are established by the method of the fifth-order polynomial interpolation of the first and last sections of the determined path. The intermediate path section is described by a typical polynomial. The polynomial coefficients are determined by the point square approximation method.

Keywords

Parallel-serial structure manipulator Programmed motion Optimization Gripper Third- and fourth-order splines 

References

  1. 1.
    Glazunov VA, Koliskor ASh, Krajnev AF (1991) Spatial mechanisms of parallel structure. Nauka, Moscow, p 95Google Scholar
  2. 2.
    Afonin VL, Podzorov PV, Sleptsov VV (2006) Processing equipment based on mechanisms of parallel kinematics. Mechanical Engineering, MoscowGoogle Scholar
  3. 3.
    Bushuev VV, Golyshev IG (2001) Mechanisms of parallel structure in mechanical engineering. STIN 1:3–8Google Scholar
  4. 4.
    RobB FlexBicker IRB 360 robot manipulator from ABB www.abb.com/robotics [Electronic resource]—Access mode: http://www.roboticturnkeysolutions.com/robots/abb/datasheet/IRB_360.pdf
  5. 5.
    Zhoga VV, Djashkin-Titov VV, Djashkin AV, Vorob’eva NS, Nesmiyanov IA, Ivanov AG (2017) Pat. 2616493 Rossijskaja Federacija, MPK V66S 23/44. Manipulator-tripod parallel-serial structure. opubl. 17.04.2017. Bjul. № 11Google Scholar
  6. 6.
    Intelligent robot/ pod obshhej redakciej E.I. Jurevicha/ I.A. Kaljaev, V.M. Lohin, I.M. Makarov i dr. Moscow: Mashinostroenie, 2007. 360 sGoogle Scholar
  7. 7.
    Dyashkin-Titov VV, Vorob’eva NS, Terekhov SE (2016) Algorithm for positioning the capture of the manipulator-tripod. In: Contemporary Mechanical Engineering: Science and Education: Materials of the 5th Intern. scientific-practical. conference. In: Evgrafova AN, Popovich AA (eds) Publishing house of Polytechnic. Univ., SPb, pp 634–644Google Scholar
  8. 8.
    Kobrinskij AA, Kobrinskij AE (1985) Manipulation systems of robots. Nauka, Moscow, 343 sGoogle Scholar
  9. 9.
    Kolovskij MZ, Sloushh AV (1998) Bases of dynamics of industrial robots. Nauka. Gl. red. fiz.-mat. Lit., Moscow, 240 sGoogle Scholar
  10. 10.
    Zhoga VV, Djashkin-Titov VV, Nesmiyanov IA, Vorob’eva NS (2016) The task of positioning the manipulator of a parallel-sequential structure with a controlled gripper. Mech Autom Control, No. 8. 17:525–530Google Scholar
  11. 11.
    Korendyasev AI, Salamandra BL, Tyves LI (2006) Theoretical foundations of robotics: in 2 books. ot. In: Kaplunov CM (ed) Institute of Mechanical Engineering. A.A. Blagonravova RAS. - Science, Book 1, Moscow 383pGoogle Scholar
  12. 12.
    Jurevicha EI, Kozlov, VV, Makarychev VP (1984) Dynamics of control of robots/ pod redakciej. i dr. Nauka. Glavnaja redakcija fiziko-matematicheskoj literatury, Moscow, 336 sGoogle Scholar
  13. 13.
    Zenkevich SL, Yushchenko AS (2004) Fundamentals of manipulation robots, MGTU. N.E. Baumana, 449pGoogle Scholar
  14. 14.
    Modeling, trajectory planning and motion control of the robot manipulator, R. Paul, Transl. with English. The main edition of the physical and mathematical literature of the publishing house “Nauka”, Moscow; 1976, 104pGoogle Scholar
  15. 15.
    Bryson A, Ho Y-s (1972) Applied theory of optimal control. Mir, Moscow, Moscow, 544pGoogle Scholar
  16. 16.
    Demidovich BP, Maron IA, Shuvalova EZ (1962) Numerical methods of analysis. State publishing house of physical and mathematical literature, Moscow, 367pGoogle Scholar
  17. 17.
    Zhoga V, Gavrilov A, Gerasun V, Nesmianov I, Pavlovsky V, Skakunov V, Bogatyrev V, Golubev D, Dyashkin-Titov, V, Vorobieva N (2014) Walking mobile robot with manipulator-tripod. In: Proceedings of Romansy 2014 XX CISM-IFToMM symposium on theory and practice of robots and manipulators. Series: Mechanisms and Machine Science, vol 22. Springer International Publishing Switzerland, pp. 463–471Google Scholar
  18. 18.
    Gerasun VM, Zhoga VV, Nesmijanov, IA, Vorob’eva, NS, Djashkin-Titov VV (2013) Determination of the service area of the mobile manipulator-tripod. Mashinostroenie i inzhenernoe obrazovanie 3, 2–8Google Scholar
  19. 19.
    Nesmiyanov I, Zhoga V, Skakunov V, Terekhov S, Vorob’eva N, Dyashkin-Titov V, Ali Hussein Al-hadsha F (2015) Synthesis of control algorithm and computer simulation of robotic manipulator-tripod. In: Communications in computer and information science. Springer International Publishing Switzerland, CIT&DS 2015, CCIS 535, pp 392–404Google Scholar
  20. 20.
    Zhoga V, Gavrilov A, Gerasun V, Nesmianov I, Pavlovsky V, Skakunov V, Bogatyrev V, Golubev D, Dyashkin-Titov V, Vorob’eva N (2014) Walking mobile robot with manipulator-tripod. In: Proceedings of Romansy 2014 XX CISM-IFToMM symposium on theory and practice of robots and manipulators. Series: Mechanisms and Machine Science, vol 22, Springer International Publishing Switzerland, pp 463–471Google Scholar
  21. 21.
    Gayduk AR (2012) Theory and methods of analytical synthesis of automatic control systems (polynomial approach). FIZMATLIT, Moscow, 360 withGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natalia S. Vorob’eva
    • 1
    Email author
  • Victor V. Zhoga
    • 2
  • Ivan A. Nesmiyanov
    • 1
  • Andrey V. Dyashkin
    • 1
  1. 1.Volgograd State Agrarian UniversityVolgogradRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations