Advertisement

Brake Blending and Optimal Torque Allocation Strategies for Innovative Electric Powertrains

  • Luca PugiEmail author
  • Tommaso Favilli
  • Lorenzo Berzi
  • Edoardo Locorotondo
  • Marco Pierini
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)

Abstract

Development of electric vehicles is not only an opportunity in terms of environmental sustainability but it also offers interesting possibilities in terms of control performances that can be achieved by on board systems devoted to increase vehicle safety and stability by modulating longitudinal efforts applied to tires. It’s not only a matter of performances but also of standardization in a single integrated subsystem able to safely control vehicle dynamics of various functions that are currently implemented by different subsystems. This simplification and rationalization of the whole mechatronic system should be of fundamental importance also for the integration of autonomous or assisted driving functionalities making easier and safer system integration.

Notes

Acknowledgements

This work is part of the OBELICS project which has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement No. 769506.

References

  1. 1.
    Gerdes, J.C., Hedrick, J.K.: Brake system modeling for simulation and control. J. Dyn. Syst. Meas. Control. Trans. ASME 121(3), 296–503 (1999).  https://doi.org/10.1115/1.2802501CrossRefGoogle Scholar
  2. 2.
    Subramanian, S.C., Darbha, S., Rajagopal, K.R.: Modeling the pneumatic subsystem of an s-cam air brake system. J. Dyn. Syst. Meas. Control. Trans. ASME 126(1), 36–46 (2004).  https://doi.org/10.1115/1.1666893CrossRefGoogle Scholar
  3. 3.
    Pugi, L., Malvezzi, M., Papini, S., Vettori, G.: Design and preliminary validation of a tool for the simulation of train braking performance. J. Mod. Transp. 21(4), 247–257 (2013).  https://doi.org/10.1007/s40534-013-0027-6CrossRefGoogle Scholar
  4. 4.
    Lv, C., Zhang, J., Li, Y., Yuan, Y.: Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles. Energy Convers. Manag. 92, 469–482 (2015).  https://doi.org/10.1016/j.enconman.2014.12.092CrossRefGoogle Scholar
  5. 5.
    Pugi, L., Pagliai, M., Nocentini, A., Lutzemberger, G., Pretto, A.: Design of a hydraulic servo-actuation fed by a regenerative braking system. Appl. Energy 187, 96–115 (2017).  https://doi.org/10.1016/j.apenergy.2016.11.047CrossRefGoogle Scholar
  6. 6.
    Berzi, L., Delogu, M., Pierini, M.: Development of driving cycles for electric vehicles in the context of the city of Florence. Transp. Res. D: Transp. Environ. 47, 299–322 (2016).  https://doi.org/10.1016/j.trd.2016.05.010CrossRefGoogle Scholar
  7. 7.
    Kukutschová, J., Roubíček, V., Malachová, K., Pavlíčková, Z., Holuša, R., Kubačková, J., Mička, V., MacCrimmon, D., Filip, P.: Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear, 267(5–8), 807–817 (2009).  https://doi.org/10.1016/j.wear.2009.01.034CrossRefGoogle Scholar
  8. 8.
    Pasillas-Lépine, William: Hybrid modeling and limit cycle analysis for a class of five-phase anti-lock brake algorithms. Veh. Syst. Dyn. 44(2), 173–188 (2007).  https://doi.org/10.1080/00423110500385873CrossRefGoogle Scholar
  9. 9.
    Fennel, H., Ding, E.L.: A model-based failsafe system for the continental TEVES electronic-stability-program (ESP) (No. 2000-01-1635). SAE Technical Paper (2000)Google Scholar
  10. 10.
    Pugi, L., Grasso, F., Pratesi, M., Cipriani, M., Bartolomei, A.: Design and preliminary performance evaluation of a four wheeled vehicle with degraded adhesion conditions. Int. J. Electr. Hybrid Veh. 9(1), 1–32 (2017).  https://doi.org/10.1504/ijehv.2017.082812CrossRefGoogle Scholar
  11. 11.
    Zhang, J., Lv, C., Gou, J., Kong, D.: Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car. Proc. Inst. Mech. Eng. D: J. Automob. Eng. 226, 1289–1302 (2018).  https://doi.org/10.1177/0954407012441884Google Scholar
  12. 12.
    Siemens Amesim™, Techinical documentation release 14.00Google Scholar
  13. 13.
    Pugi, L., Pagliai, M., Allotta, B.: A robust propulsion layout for underwater vehicles with enhanced manoeuvrability and reliability features. Proc. Inst. Mech. Eng. M: J. Eng. Marit. Environ. (2017).  https://doi.org/10.1177/1475090217696569Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luca Pugi
    • 1
    Email author
  • Tommaso Favilli
    • 1
  • Lorenzo Berzi
    • 1
  • Edoardo Locorotondo
    • 1
  • Marco Pierini
    • 1
  1. 1.DIEF (Dipartimento di Ingegneria Industriale)Università degli Studi di FirenzeFlorenceItaly

Personalised recommendations