Advertisement

Investigating an Active Cooling System Powered by a Thermoelectric Generator

  • Pietro TosatoEmail author
  • Maurizio Rossi
  • Davide Brunelli
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)

Abstract

The diffusion of powerful microprocessors, even in embedded processing, justifies the need for more efficient heat dissipation. Even though the implementation of active cooling is often easy, in this study, we show how to lower the temperature of a general-purpose microprocessor with energy harvesting techniques. We present a joint thermal and electrical analysis of a thermoelectric-powered active cooler and we demonstrate that it is possible to decrease the temperature some Celsius degrees with respect to a regular passive cooler using the same energy dissipated by the processor under the heat-sink.

Keywords

Thermoelectric generator Energy harvesting Energy neutral system Thermoelectric cooling 

References

  1. 1.
    Bergonzini, C., Brunelli, D., Benini, L.: Comparison of energy intake prediction algorithms for systems powered by photovoltaic harvesters. Microelectron. J. 41(11), 766–777 (2010)CrossRefGoogle Scholar
  2. 2.
    Brunelli, D., Dondi, D., Bertacchini, A., Larcher, L., Pavan, P., Benini, L.: Photovoltaic scavenging systems: modeling and optimization. Microelectron. J. 40(9), 1337–1344 (2009)CrossRefGoogle Scholar
  3. 3.
    Brunelli, D., Farella, E., Rocchi, L., Dozza, M., Chiari, L., Benini, L.: Bio-feedback system for rehabilitation based on a wireless body area network. In: Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW 2006), p. 5 p. 531, March 2006Google Scholar
  4. 4.
    Brunelli, D., Tosato, P., Rossi, M.: Microbial fuel cell as a biosensor and a power source for flora health monitoring. In: 2016 IEEE SENSORS, pp. 1–3, Oct 2016Google Scholar
  5. 5.
    Carmo, J., Antunes, J., Silva, M., Ribeiro, J., Goncalves, L., Correia, J.: Characterization of thermoelectric generators by measuring the load-dependence behavior. Measurement 44(10), 2194–2199, Dec 2011CrossRefGoogle Scholar
  6. 6.
    Champier, D.: Thermoelectric generators: a review of applications. Energy Convers. Manag. 140, 167–181 (2017)CrossRefGoogle Scholar
  7. 7.
    Dziurdzia, P.: Modeling and simulation of thermoelectric energy harvesting processes. In: Sustainable Energy Harvesting Technologies - Past, Present and Future. InTech, Dec 2011Google Scholar
  8. 8.
    Izidoro, C., Junior, O.A., Carmo, J., Schaeffer, L.: Characterization of thermoelectric generator for energy harvesting. Measurement 106, 283–290, Aug 2017CrossRefGoogle Scholar
  9. 9.
    Martínez, A., Astrain, D., Rodríguez, A.: Dynamic model for simulation of thermoelectric self cooling applications. Energy 55, 1114–1126, Jun 2013CrossRefGoogle Scholar
  10. 10.
    Nardello, M., Tosato, P., Rossi, M., Brunelli, D.: A thermoelectric powered system for skiing performance monitoring. In: Applications in Electronics Pervading Industry, Environment and Society, pp. 135–144. Springer International Publishing (2019)Google Scholar
  11. 11.
    Pasquato, L., Bonotto, N., Tosato, P., Brunelli, D.: An optimized wind energy harvester for remote pollution monitoring. In: 2017 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), pp. 1–6, July 2017Google Scholar
  12. 12.
    Porcarelli, D., Brunelli, D., Benini, L.: Characterization of lithium-ion capacitors for low-power energy neutral wireless sensor networks. In: 2012 Ninth International Conference on Networked Sensing (INSS), pp. 1–4, June 2012Google Scholar
  13. 13.
    Porcarelli, D., Brunelli, D., Benini, L.: Clamp-and-forget: a self-sustainable non-invasive wireless sensor node for smart metering applications. Microelectron. J. 45(12), 1671–1678 (2014)CrossRefGoogle Scholar
  14. 14.
    Porcarelli, D., Spenza, D., Brunelli, D., Cammarano, A., Petrioli, C., Benini, L.: Adaptive rectifier driven by power intake predictors for wind energy harvesting sensor networks. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 471–482 (2015)CrossRefGoogle Scholar
  15. 15.
    Primus, F.J., Goldenberg, M.D., Hills, S.: United States Patent (19 ) (1991)Google Scholar
  16. 16.
    Rizzon, L., Rossi, M., Passerone, R., Brunelli, D.: Energy neutral hybrid cooling system for high performance processors. In: International Green Computing Conference, pp. 1–6, Nov 2014Google Scholar
  17. 17.
    Rossi, M., Rizzon, L., Fait, M., Passerone, R., Brunelli, D.: Energy neutral wireless sensing for server farms monitoring. IEEE J. Emerg. Sel. Top. Circuits Syst. 4(3), 324–334 (2014)CrossRefGoogle Scholar
  18. 18.
    Sartori, D., Brunelli, D.: A smart sensor for precision agriculture powered by microbial fuel cells. In: 2016 IEEE Sensors Applications Symposium (SAS), pp. 1–6, April 2016Google Scholar
  19. 19.
    Siddique, A.R.M., Mahmud, S., Heyst, B.V.: A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sustain. Energy Rev. 73(January), 730–744 (2017)CrossRefGoogle Scholar
  20. 20.
    Spies, P., Pollak, M., Rohmer, G.: Power management for energy harvesting applications (2018)Google Scholar
  21. 21.
    Zhou, Y., Paul, S., Bhunia, S.: Harvesting Waste Heat in a Microprocessor Using Thermoelectric Generators - Modeling Analysis and Measurement.Pdf, pp. 98–103 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pietro Tosato
    • 1
    Email author
  • Maurizio Rossi
    • 1
  • Davide Brunelli
    • 1
  1. 1.Department of Industrial EngineeringUniversity of TrentoTrentoItaly

Personalised recommendations