Analysis of Cybersecurity Weakness in Automotive In-Vehicle Networking and Hardware Accelerators for Real-Time Cryptography

  • Luca BaldanziEmail author
  • Luca Crocetti
  • Matteo Bertolucci
  • Luca Fanucci
  • Sergio Saponara
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)


The work analyses the cybersecurity weakness in state-of-art automotive in-vehicle networks and discusses possible countermeasures at architecture level. Due to stringent real-time constraints (throughput and latency)  of fail-safe automotive applications, hardware accelerators are needed. A hardware accelerator design for AES (Advanced Encryption Standard)-128/256 calculation, the latter being already considered post-quantum resistant, is also presented together with implementation results in FPGA and 45 nm CMOS technology.


HW accelerators Automotive cybersecurity AES (Advanced Encryption Standard) 



This work has been partially supported by PRA2017 and EPI H2020 projects.


  1. 1.
    Nilsson, D.K., Larson, U.E., Picasso, F., Jonsson, E.: A first simulation of attacks in the automotive network communications protocol flexray. In: International Workshop on Computational Intelligence in Security for Information Systems, CISIS 2008, pp. 84–91. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Lin, C.W., Sangiovanni-Vincentelli, A.: Cyber-security for the controller area network (CAN) communication protocol. In: International Conference on Cyber Security, p. 17 (2012)Google Scholar
  3. 3.
    Wolf, M., Weimerskirch, A., Paar, C.: Secure In-Vehicle Communication, p. 95109. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Avatefipour, O., Malik, H.: State-of-the-art survey on in-vehicle network communication CAN-Bus security and vulnerabilities. Int. J. Comput. Sci. Netw. 6(6), 720–727 (2017)Google Scholar
  5. 5.
    Cho, K.-T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection. In: 25th USENIX Security Symposium, Austin, TX, pp. 911–927 (2016)Google Scholar
  6. 6.
    dos Santos, E., Simpson, A., Schoop, D.: A formal model to facilitate security testing in modern automotive systems. In: Joint Workshop on Handling IMPlicit and EXplicit Knowledge in Formal System Development (IMPEX) and Formal and Model-Driven Techniques for Developing Trustworthy Systems, pp. 95–104 (2017)Google Scholar
  7. 7.
    Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks-practical examples and selected short-term countermeasures. Reliab. Eng. Syst. Saf. 96(1), 11–25 (2011). Special Issue on Safecomp 2008CrossRefGoogle Scholar
  8. 8.
    Lukasiewycz, M., Mundhenk, P., Steinhorst, S.: Security-aware obfuscated priority assignment for automotive CAN platforms. ACM Trans. Des. Autom. Electron. Syst. 21(2) (2016)CrossRefGoogle Scholar
  9. 9.
    Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani, M.T.M.: On the power of power analysis in the real world: a complete break of the KeeLoq code hopping scheme. In: Wagner, D. (ed.) Advances in Cryptology CRYPTO 2008, pp. 203–220. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis of a modern automobile. In: IEEE Symposium on Security and Privacy, pp. 447–462 (2010)Google Scholar
  11. 11.
    Shreejith, S., Mundhenk, P., Ettner, A., Fahmy, S.A., Steinhorst, S., Lukasiewycz, M., Chakraborty, S.: Vega: a high performance vehicular ethernet gateway on hybrid FPGA. IEEE Trans. Comput. 66(10), 17901803 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Patsakis, C., Dellios, K., Bouroche, M.: Towards a distributed secure in-vehicle communication architecture for modern vehicles. Comput. Secur. 40, pp. 60–74 (2014)CrossRefGoogle Scholar
  13. 13.
    Sghaier, A., Zeghid, M., Machhout, M.: Fast hardware implementation of ECDSA signature scheme. In: 2016 International Symposium on Signal, Image, Video and Communications, pp. 343–348 (2016)Google Scholar
  14. 14.
    Ueda, H., Kurachi, R., Takada, H., Mizutani, T., Inoue, M., Horihata, S.: Security Authentication System for In-Vehicle Network. SEI Tech. Rev. 81 (2015)Google Scholar
  15. 15.
    Mundhenk, P., Paverd, A., Mrowca, A., Steinhorst, S., Lukasiewycz, M., Fahmy, S.A., Chakraborty, S.: Security in automotive networks: lightweight authentication and authorization. Trans. Des. Autom. Electron. Syst. 22(2), 25:125:27 (2017)CrossRefGoogle Scholar
  16. 16.
    Wang, Q., Sawhney, S.: VeCure: A practical security framework to protect the can bus of vehicles. In: 2014 International Conference on the Internet of Things (IOT), pp. 13–18 (2014)Google Scholar
  17. 17.
    Waszecki, P., Mundhenk, P., Steinhorst, S., Lukasiewycz, M., Karri, R., Chakraborty, S.: Automotive electrical and electronic architecture security via distributed in-vehicle traffic monitoring. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(11), 17901803 (2017)CrossRefGoogle Scholar
  18. 18.
    Okhravi, H., Sheldon, F.T., Haines, J.: Data Diodes in Support of Trustworthy Cyber Infrastructure and Net-centric Cyber Decision Support, pp. 203–216. Springer (2013)Google Scholar
  19. 19.
    National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), 26 Nov 2001Google Scholar
  20. 20.
    Moody, D.: National Institute of Standards and Technology (NIST), Update on the NIST post-quantum cryptography project.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luca Baldanzi
    • 1
    Email author
  • Luca Crocetti
    • 1
  • Matteo Bertolucci
    • 1
  • Luca Fanucci
    • 1
  • Sergio Saponara
    • 1
  1. 1.Department of Information Engineering (DII)University of PisaPisaItaly

Personalised recommendations